Christopher C. Gibbs College of Architecture
University of Oklahoma

Interim Progress Report for Year Five

November 30, 2020
1. INSTRUCTIONS AND TEMPLATE GUIDELINES

Purpose

Continuing accreditation is subject to the submission of interim progress reports at defined intervals of 2 years and 5 years after an eight-year term of continuing accreditation is approved.

This narrative report, supported by documentation, covers four areas:
1. The program’s progress in addressing not-met Conditions and Student Performance Criteria (SPC) from the Interim Progress Report Year 2 review.
2. Progress in Addressing Causes for Concern.
3. Changes or Planned Changes in the Program.
4. Summary of Responses to Changes in the 2014 NAAB Conditions.

2. EXECUTIVE SUMMARY OF THE TWO MOST RECENT NAAB VISITS: 2015 and 2009

<table>
<thead>
<tr>
<th>CONDITIONS NOT MET</th>
<th>2015 VTR</th>
<th>2009 VTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.3.1 Statistical Reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.3.2 Annual Reports</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STUDENT PERFORMANCE CRITERIA NOT MET</th>
<th>2015 VTR</th>
<th>2009 VTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2 Accessibility</td>
<td></td>
<td>13.1 Speaking and Writing Skills</td>
</tr>
<tr>
<td>B.3 Sustainability</td>
<td></td>
<td>13.14 Accessibility</td>
</tr>
<tr>
<td>B.4 Site Design</td>
<td></td>
<td>13.22 Building Service Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.28 Comprehensive Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.25 Construction Cost Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.26 Technical Documentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUSES OF CONCERN</th>
<th>2015 VTR</th>
<th>2009 VTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Project Display Area</td>
<td>Social Equity</td>
<td></td>
</tr>
<tr>
<td>Ownership of Space</td>
<td>Human Resources</td>
<td></td>
</tr>
<tr>
<td>Financial Autonomy</td>
<td>Physical Resources</td>
<td></td>
</tr>
<tr>
<td>Adequate Faculty Numbers</td>
<td>Financial Resources</td>
<td></td>
</tr>
<tr>
<td>Faculty Recognition</td>
<td>Graphic Skills</td>
<td></td>
</tr>
<tr>
<td>Life-Cycle Cost Analysis</td>
<td>Program Preparation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life-Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building Envelope Systems</td>
<td></td>
</tr>
</tbody>
</table>
Interim Progress Report Year 5
University of Oklahoma
College of Architecture, Division of Architecture
Bachelor of Architecture (160 undergraduate credit hours)
Master of Architecture [60-96 credit hours]
Year of the previous visit: 2015

Chief administrator for the academic unit in which the program is located:
Stephanie Z. Pilat, Ph.D., FAAR ’07, Associate AIA
spilat@ou.edu
405-325-9352

Any questions pertaining to this submission will be directed to the chief administrator for the academic unit in which the program is located.

Chief academic officer for the Institution:
Jill Irvine, Interim Senior Vice President and Provost
Jill.irvine@ou.edu
405-325-3221
I. Progress in Addressing Not-Met Conditions and Student Performance Criteria

a. Progress in Addressing Not-Met Conditions

I.3.1 Statistical Reports

2015 Visiting Team Assessment: The institution has submitted Statistical Reports each year and these were certified by the institution’s associate provost and director in a March 24, 2015 letter. However, the team’s review of the Statistical Reports revealed inaccuracies regarding faculty education, faculty salaries, and student demographics. These inaccuracies occurred in multiple reports.

University of Oklahoma, 2020 Response: In 2017, we requested permission to correct errors in previous Annual Statistical reports. We submitted updated statistical information to correct errors. The NAAB reviewed our 2017 progress report and concluded that we had demonstrated progress toward addressing deficiencies in a letter from NAAB dated March 29, 2018. We have submitted all statistical reports on time and in full since 2015.

I.3.2 Annual Reports

2015 Visiting Team Assessment: The Annual Reports available through the NAAB website and through the APR include the statistical information (which, as described above, contained errors and omissions). Also available was one Focused Evaluation Report dated 2012. The APR states: “The NAAB response to the 2012 Focused Evaluation Report is not posted on NAABs website.” Such a response was also not available to the team via the NAAB website. On the other hand, the NAAB did provide a one-page response to the 2011 Annual report. In it, 10 items received identical feedback: “The program provided no new information from that presented in the 2010 annual report.” Three items are identified as being satisfied or having progress made. It appears that the 2010 Annual Report contained less information than the NAAB expected. Incidentally, the team also looked for narrative responses to deficiencies cited in the 2009 VTR, believing that a narrative would have been submitted each year in this regard. These were not available on the NAAB website or in the APR. This item is cited as not providing appropriate information due to inaccuracies in the statistical data.

University of Oklahoma, 2020 Response: Since 2015, we have faithfully submitted all Annual Reports on time and in full. Moreover, while we did have deficiencies in our reporting in 2010-2011, new leadership in the Division starting in 2013 has consistently produced all required reports and, in 2015, earned commendations from the Visiting Team, who noted, “The team was highly impressed with the leadership and organization skills of Division Director Hans Butzer.” Butzer now serves as Dean of the college, where his organization and leadership skills continue to be a benefit. The NAAB reviewed our 2017 progress report and concluded that we had demonstrated progress toward addressing this deficiency.

b. Progress in Addressing Not-Met Student Performance Criteria

B.2 Accessibility

2015 Visiting Team Assessment: This criterion is still Not Met. Some evidence of ability regarding accessibility was found at the B. Arch level in ARCH 4755: Design VII Systems and Content and ARCH G5055: Design X Comprehensive Architecture II, and at the M. Arch level in
ARCH 5055: Design X Comprehensive Architecture II. However, student understanding appeared to be uneven and lacking in the many components of accessibility requirements. Consideration of universal accessibility design was not commonly apparent. Path of travel through a site, accessible parking, building egress, and restroom design were spotty and undeveloped.

This criterion calls for **ability** to design sites, facilities, and systems to provide independent and integrated use by individuals with physical (including mobility), sensory, and cognitive disabilities.

University of Oklahoma, 2020 Response: Since 2015, we have made a series of adjustments to the ways in which we teach accessibility and universal design to ensure that students have: the broad ethical understanding of why we must design for accessibility and equitable experiences; a comprehensive understanding of design guidelines spanning from the scale of the site to a grab bar detail; and the ability to apply this knowledge in their studio projects. The sequence of lectures, readings, assignments, and projects, which teach accessibility concepts and applications follow the EDGE method of teaching: Explain, Demonstrate, Guide, Enable. The key courses where this material is taught and applied are almost all cross-listed courses which serve both our 5-year Bachelor of Architecture degree and our Master of Architecture degree tracks. In these cross-listed courses, graduate students are assigned additional and more challenging assignments to warrant graduate credit.

First, Dr. Lee Fithian has been charged with re-designing and teaching two courses that center on sustainability, building codes and regulations, and environmental systems: ARCH 2463 Methods IV: Sustainable and Resilient Systems I and ARCH 4563 Methods V: Sustainable and Resilient Systems II. In Methods V, offered in the fall of the third-year, Dr. Fithian incorporates a series of lectures and assignments on building codes and accessibility guidelines. Lectures and readings first explain the ethical imperative to design for accessibility and equity. A demonstration of putting accessible design into practice is incorporated into a key assignment that uses example layouts with annotated accessibility criteria. Using a case study building, students submit a project and receive detailed feedback on how the project meets code and other requirements including accessibility. Students must submit a Code Analysis that shows how accessibility requirements are met. Delving into greater detail still, a later unit in the course draws on the Illuminating Engineering Society research and teaches students how to analyze the relationships between lighting design and accessibility. Students’ understanding of these concepts is assessed through the final exam, which is coordinated with the studio final project as demonstration of understanding.

The fall semester third year design studio, ARCH 3556 Design V, centers on site design and challenges students to design a building complex on a hilly natural site with a creek running through it. Through an iterative design process, students are guided and enabled to design accessible paths of travel from their parking lots to their buildings as well as through the buildings themselves. This project provides an opportunity to fully apply the concepts of accessibility they are learning in their concurrent Methods V course described above in a design studio project in connection to site design.

Building on this foundational understanding of accessibility, students engage these concepts in even greater detail the following year in another methods course in the fourth-year: ARCH
4723/5723 Methods VII – Advanced Systems. Students are re-introduced to the ethics underpinning accessible design guidelines, this time through an explanation of the AIA Committee on the Environment (COTE) framework and toolkit. The COTE Top Ten Measures of Sustainability includes measures for: Design for Community and Design for Wellness. The COTE measures reinforce the connection between ethics, sustainability, community and accessibility and encourage students to go above and beyond minimum requirements for accessibility by incorporating, for example, Mothers’ Rooms and provisions for cyclists. In this course, students are then guided to put their growing understanding into practice through a case study analysis assignment. Each student is assigned a building to deconstruct and analyze in terms of how it relates to the COTE measures as well as other criteria including accessibility. Together, these three courses (Methods V, Design V, and Methods VII) serve as preparation and support for a comprehensive application of accessible design principles in ARCH 4756/5536 Design VII. This course is taken in the fall of the fourth year concurrently with Methods VII described above. Since 2015, the main project for this course has been dramatically altered in order to enable students to better meet the NAAB criteria for sustainability, site design, and accessibility. During the previous NAAB team visit in 2014, the project for this studio was a 20,000 square foot mixed use building on a flat urban site in Kansas City. The project has since been reduced in size, the program has been altered to focus explicitly on sustainability, and the site has been changed to a natural, hilly site in a flood plain located in tornado alley, on the border of Moore and Norman, Oklahoma. In Design VII, students are challenged to design an 8-10,000 square foot Resiliency Education & Architectural Learning (REAL) Center. Furthermore, the studio has been reorganized to focus expressly on the AIA COTE competition. Students begin the semester by undertaking research to identify all relevant zoning and code regulations, including ADA. Students then analyze how these are addressed through precedent studies. A field trip to the COTE award winning Josey Pavilion in Texas serves as a powerful design precedent that students experience and learn from firsthand. Throughout the semester, student work is evaluated based on successful demonstration of meeting all ten COTE measures, which includes not only technical competency in accessible design, but importantly the ability to demonstrate a philosophical commitment to designing for inclusion. Midterm reviews (Assignment 3 in the appendix) center specifically on technical competencies including meeting code regulations and accessibility requirements. Feedback on these technical issues drive and inform iterations of the design throughout the semester. Passing projects in this course must demonstrate accessible paths of travel, accessible building egress, and accessible restroom design. Technical drawings demonstrate this in the midterm assignment and the outcomes are further evident in the final project boards.

B.3 Sustainability

2015 Visiting Team Assessment: All students appear to have an understanding of wind roses, the need to consider sun-angle diagrams, and the existence of LEED checklists; however, there was not enough indication of how sun and day-lighting, wind, and other environmental factors influence design decisions. Work provided to the team did not adequately reflect ability with regard to environmental conservation or the ability to produce designs that reduce environmental impacts into the future.
This criterion demands ability to design projects that optimize, conserve, or reuse natural and built resources, provide healthful environments for occupants/users, and reduce the environmental impacts of building construction and operations on future generations through means such as carbon-neutral design, bioclimatic design, and energy efficiency.

University of Oklahoma, 2020 Response: Since 2015, we have made significant revisions to our courses on Environmental Systems and also re-oriented nearly all studio projects towards considerations of sustainability. First, as mentioned above, Dr. Lee Fithian has re-invented key courses in our curriculum that center on sustainability and environmental systems and challenge students to apply that knowledge through design. Unlike prior instructors of the undergraduate courses in this sequence, Dr. Fithian is a licensed architect, LEED AP, National Environmental Leadership Program Fellow, certified planner and holds a doctorate in Engineering. Her interdisciplinary doctoral research proposed ways in which urban canyons subject to air quality issues could be addressed through green façade designs. As this topic suggests, Dr. Fithian has the rare breadth that comes from working across disciplines, in practice and in research as well as the depth that comes from advanced doctoral level studies. Dr. Fithian now brings this incredible expertise to the five different required courses centered on sustainable design in our curricula (ARCH 2463 Methods IV: Sustainable and Resilient Systems I; ARCH 3556: Design V; ARCH 4563 Methods V: Sustainable and Resilient Systems II, ARCH 5463 Advanced Sustainable and Resilient Systems; and ARCH 5863 Methods VIII Building Performance Analytics). The content in these courses builds from developing an understanding of passive systems to active ones and incorporates an understanding of how to use the latest apps and strategies for analyzing building performance. Building codes and regulations are also covered. This content is supported by the foundation provided by ARCH 2363 Methods III Materials and Form, which introduces students to building materials and methods. Graduate students further develop their expertise through ARCH 4723/5723 Methods VII – Advanced Systems, which challenges students to connect sustainable materials and methods to design details at an advanced level.

While all studio courses now teach design within a sustainable conceptual framework with increasing technical competency, students are challenged to fully synthesize and apply their comprehensive understanding of sustainable design in ARCH 4756/5536 Design VII, which centers on the AIA COTE competition. As noted above, since 2014, the project for this studio has been scaled down from 20,000 square feet to 8-10,000 square feet in order to enable students to delve deeper into designing the site, enclosure, wall sections, structure, ventilation and lighting strategies all focused on sustainable design. The site and program of this studio project have also been altered in order to allow for a more complex site design challenge. The new site is a wooded and hilly site, and partially situated in a flood plain on the edge of Moore, Oklahoma, a town famous for having suffered more F5 tornadoes than . The program is a Resiliency Education & Architectural Learning (REAL) Center. Most importantly, the entire studio is centered on the COTE measures. The studio is organized to take students step by step through a sequence of design assignments that prompt students to develop responses to all 10 COTE measures, which include designing for ecosystems, equity, water conservation,
economy, material resource conservation, well-being, energy conservation and more. This process ensures that every student gradually builds up the necessary complexity of their sustainable design strategies through an iterative process with rigorous and regular feedback over the course of the semester. Students enter their final project boards, which outline their COTE strategies, in the AIA student competition.

B.4 Site Design

2015 Visiting Team Assessment: The team was not able to locate student work that involved complex site conditions. As a result, the ability to respond to the site characteristics listed above was not evident. Abilities with regard to other aspects of site design, such as parking and travel to and through a site, were inconsistently reflected in student work.

This criterion demands *ability* to respond to site characteristics such as soil, topography, vegetation, and watershed in the development of a project design.

University of Oklahoma, 2020 Response: In 2016, we revised our curriculum to have second-, third- and fourth-year fall design studios focus on rural or suburban sites with sloping terrain and natural elements. Spring studios at these year levels, in contrast, now focus on urban sites. This organization has helped to ensure that we address a variety of site types repeatedly throughout the core years of our curriculum.

As with Accessibility, we have used the EDGE framework (explain, demonstrate, guide, enable) and developed a sequence of lectures, in-class assignments and projects in order to teach site design and provide repeated opportunities for students to practice their skills. While students are introduced to basic concepts of site design in first year, it is in the fall of second year that they are first challenged to do a schematic site design. The second-year project investigates the design of an equine center which includes the re-contouring of a site to accommodate buildings and outdoor spaces for both human and equine experiences. The fall third-year studio, Design V, is centered specifically on site design and further challenges students to integrate their knowledge of passive environmental systems through a project on a sloping site with a creek running through it. Located on the south campus of OU, the site was formerly part of a Navy base and retains relics of this history. Dr. Fithian, who teaches our sustainability and environmental systems courses, is the coordinator and leader of the Design V studio. This allows her to challenge students to apply the knowledge gained in her lecture courses, particularly Methods IV, to their work in this studio centered on site design. The program of this project—a yoga and meditation retreat center—further encourages students to consider the building’s environmental relationship to the natural landscape. Students apply the analytical skills learned in their accompanying Methods coursework in their studio projects through analyses of wind and natural ventilation, solar orientation and daylighting and passive heating and cooling strategies. Throughout the semester students have a series of lectures, assignments and project reviews centered on developing their site design skills.
II. Progress in Addressing Causes of Concern

Student Project Display Area

2015 Visiting Team Assessment: Students were united in their desire to have spaces where they could hang drawings to view, reference, and display during the design process. Faculty members and the division’s Professional Advisory Board shared similar concerns over the lack of pin-up space.

University of Oklahoma, 2020 Response: Since 2015, the College of Architecture has made a number of upgrades in Gould Hall and in each and every studio to ensure generous amounts of pin-up space. First, studio desks have been outfitted with 18”-high homesote pin-up boards on the edge of each desk. This allows each student to have their own dedicated space to pin up materials and sketches. Second, more pin-up space has been added throughout the studios of Gould Hall. Nearly every single available wall in a studio is now covered in pin-up spaces. Moreover, these are larger, stretching higher and lower, than previous limited boards. In many studios we have fabricated custom sliding panels covered in homesote so that studio instructors may adapt the spaces as needed. These provide private focused spaces for reviews when needed. Finally, we have transformed many of the corridors of Gould Hall into pin-up and review space. In all 95 sheets of homesote (4’x8’) have been purchased and installed throughout the building for a net gain of approximately 3,040 square feet of pin-up space.

Ownership of Space

2015 Visiting Team Assessment: Studio, lecture, and common spaces provided throughout this new facility are cutting edge and are greatly appreciated by students and faculty. However, cultivating a healthy and productive sense of pride and ownership on the part of the architecture students requires that students and faculty have an adequate ability to both “use” and maintain the studio spaces as needed to work comfortably and to produce the necessary architectural models, drawings, and creative experiments.

University of Oklahoma, 2020 Response: Since 2015, we have gained a much improved sense of ownership in the building, due in part to the newness of the facility wearing off and a change in leadership and attitude at the Dean level. Students now routinely take over the hallways for small group discussions, and even feel empowered to create their own guerrilla displays in the building. Faculty have increasingly found creative ways to use the public spaces of the building for installations and display. In 2017, for example, Professors Proietti and Hoffner created an interactive art installation in the gallery of Gould Hall dedicated to the American School.

Financial Autonomy

2015 Visiting Team Assessment: The institution distributes funds to the College of Architecture. The college’s dean allocates resources to the program, but maintains control of finances for all five divisions of the college. The dean also maintains control of roughly $16,000
collected each year from architecture students for the Consolidated Course Fee, which appears to go into one large pot that is allocated at the dean’s discretion. Fortunately, at this time, the architecture program has a great deal of input as to what kinds of resources, programs, and travel activities it would like the dean to fund. With past deans, this apparently was not always the case – and the existing system still has the potential to cause difficulty for the program. However, this level of budgetary autonomy appears to parallel that of other divisions of this size in the institution. There seems to be recent improvement in budgetary transparency for faculty members who are planning field trips and special programs. The team encourages continued refinement of the system for viewing and tracking budgets and expenditures.

University of Oklahoma, 2020 Response: The Division of Architecture continues to receive $30,000 in Maintenance and Operation funds annually from the College. This allocation has not, however, been updated in the last 5 years to reflect the growing enrollments or program needs. These funds are primarily used to support events in the Division, guest reviewers, student competitions, and faculty research and travel. Since 2015, the College has received a $5 million naming gift from Christopher C. Gibbs. The Division of Architecture is awarded a percentage of the interest from this gift, which amounts to approximately $90,000 each year. These funds are divided into 35% for faculty support; 50% for student support in the form of scholarships and 15% in program support for activities such as field trips and competitions. The faculty collectively agreed to use the Gibbs faculty apportionment to create the Gibbs Research Fellowship, a rotating research fellowship, awarded through blind peer review, which provides $5,000 per year for three years in research support. In addition to these funds, we also continue to receive $9,000 per year from course fees to support field trips and funding from tech fees for equipment purchases. This allocation from course fees to support student travel has not been updated in over 5 years despite dramatically growing student enrollments. The Division’s foundation account collects funds from fundraiser events such as an Oktoberfest. These support research, design awards and publication incentive awards for faculty each year. A detailed Action Plan in the appendix outlines how we aim to continually improve financial transparency and autonomy. Details on the Gibbs Research Fellowship and Publication Incentive Awards see the publicly posted documents on our College Website here: https://architecture.ou.edu/forms-policies/

Adequate Faculty Numbers

2015 Visiting Team Assessment: Faculty members face increasing expectations to produce high-quality, funded, and publishable research – while maintaining high numbers of student contact hours each semester. Architecture students insist that they are benefiting immensely from their faculty’s high level of availability and willingness to help whenever called upon. The dean has a plan to fill one currently vacant faculty line this year and another next year. However, with additional retirements possible, it will be important to provide replacements. The current uncertainty and instability regarding funding for Graduate Assistants is an additional cause for concern on the part of the team.

University of Oklahoma, 2020 Response: Due to on-going financial stresses in the state of Oklahoma and a declining budget, the number of tenured and tenure track positions in the Division of Architecture has not increased significantly since 2015, despite identified need at that time. Student enrollments have increased dramatically exacerbating the need for full time faculty lines. This has forced us to be creative in our faculty recruiting efforts. We have successfully recruited visiting faculty from Italy, Serbia and Mexico. We have found that we are able to recruit a diverse pool of candidates to short term
visiting positions. Two of these visiting faculty (Proietti and Cianfarani) were later awarded tenure-track positions through highly competitive searches. Building on these successes, we created a new two-year teaching fellowship modelled off of those at the University of Michigan: the Herb Greene Teaching Fellow. In 2019, Mexican architect Rene Peralta joined our faculty as the first Herb Greene Teaching Fellow. Peralta has brought an important perspective and shared his research on border cities with the OU community. In the spring of 2021, we hope to search for three new two-year teaching fellows, pending provost approval. Thus, despite inadequate tenure track faculty lines, we have developed creative ways to diversify our faculty and bring in new perspectives and energy. A detailed action plan in the appendix outlines how we propose to increase faculty numbers and staff support.

Faculty Recognition

2015 Visiting Team Assessment: The architecture program has created an annual evaluation sheet that appears to be fair and provide transparency. It has also established a new administrative structure.

University of Oklahoma, 2020 Response: Since 2015, we have introduced 5 new initiatives designed to fairly evaluate, support and recognize faculty work. 1) A new instructional unit load policy, which more accurately measures teaching efforts across the college was approved by Division faculty in 2018 and by the entire College in 2019. 2) In the fall of 2019, faculty of the entire college came together to create a shared set of annual evaluation criteria for all faculty. Given that all faculty in the college vote on tenure and promotion cases, sharing criteria was an important way to create equity across the college in terms of expectations and evaluations. 3) In 2016, the College revised the submission and evaluation process for our “Program for Research Enhancement (PRE)” grants. All PRE applications now undergo blind review by scholars and designers outside the college. Creative practice work is now eligible, which has improved support for architecture and design faculty in particular. 4) The Division of Architecture uses funds from the new $5million Gibbs endowment to support the Gibbs Research Fellowship Program. Each year all full-time faculty including visiting professors and lecturers are eligible to apply for the Gibbs Fellowship. This provides $5,000 per year for three years to support research or creative activity. With three of these rotating fellowships, each year a new one is awarded. The award process includes a blind peer review by scholars and designers outside the College, ensuring that every applicant gets meaningful feedback. 5) Using funds raised through events, we have introduced the Publication and Award incentive program, which provides bonuses to faculty who publish peer-reviewed articles or win awards. On all of these initiatives documents can be found at: https://architecture.ou.edu/forms-policies/

Life-Cycle Cost Analysis

2015 Visiting Team Assessment: (Student Performance Criterion B.7 Financial Considerations) Although the financial considerations criterion is Met in 2015, direct student output illustrating and understanding of life-cycle cost analysis (LCA) was sparse. More emphasis should be placed on LCA in coming years.

University of Oklahoma, 2020 Response: Since 2015, we have redesigned how we teach Life-Cycle Cost Analysis in order to ensure all students demonstrate their understanding through assignments and projects. Students understanding is developed through a sequence of three courses: ARCH 4723/5723 – Methods VII; ARCH 4756/5536-Design VII; and ARCH 5923 – Methods IX. Methods VII and Design VII are taught together, with Professor Dan Butko leading both. As we have
revised the curricula for Methods VII and Design Studio VII, we have sought to incorporate a greater emphasis on Life-Cycle Cost Analysis, through assignments and through the final project, which is framed and evaluated on the basis of the COTE criteria. Lectures and exams in Methods VII, for example, address a wide range of issues tied to financial considerations including scheduling, environmental and financial impacts of material choices, industry innovations, carbon footprint, material transportation costs, and durability. These lectures and assignments are complemented by Design VII, taken in the same semester and coordinated by Professor Butko, who teaches Methods VII. Students are further challenged to apply their understanding of financial considerations through their design project. Moreover, precedent research projects specifically investigate the issue of Life-Cycle Cost Analysis (see assignment in appendix). Finally in these courses we regularly engage Construction Science Faculty from our college as guest lecturers, project reviewers. In ARCH 5923 Methods IX – Entrepreneur and Leadership Architect, we build on this expertise in the context of professional practice. Lectures and assignments on business, project and management practices challenge students to develop an understanding of their obligations as professionals to manage building costs not only in the short term but throughout the life of a building. Examples of Life-Cycle Cost and its analysis are considered relative to project specifications, basic services vs. additional services, and rejecting or accepting of certificates of payments.

III. Changes or Planned Changes in the Program

Please report such changes as the following: faculty retirement/succession planning; administration changes (dean, department chair, provost); changes in enrollment (increases, decreases, new external pressures); new opportunities for collaboration; changes in financial resources (increases, decreases, external pressures); significant changes in educational approach or philosophy; changes in physical resources (e.g., deferred maintenance, new building planned, cancellation of plans for new building).

University of Oklahoma, 2020 Response: Since our last accreditation visit, enrollment in our programs has increased dramatically from 172 students to over 280 students today. Credit hour generation has increased from 5,000 to nearly 8,000 hours per year. Since that time we have also had a series of leadership changes at the highest level. President Boren retired in 2018 after more than two decades. President Gallogly served for less than one year (2018-9) before suddenly resigning. President Joe Harroz served as interim President before being officially appointed President in 2020. Provost Kyle Harper stepped down in 2020 and we now have an interim Provost, Jill Irvine. Since 2015, leadership within the College has also changed. In February of 2016, Dean Charles Graham passed away. Then Director Hans Butzer was promoted to Dean of the College of Architecture and Associate Director Stephanie Pilat was promoted to Director of the Division of Architecture. Opportunities for collaboration within the College and across the University remain a hallmark of our program. New financial resources have been established thanks to the $5 million naming gift from Christopher C. Gibbs. The Division of Architecture receives approximately $90,000 from these funds each year, which are allocated to student scholarships (50%); faculty support (35%) and program support (15%). Since 2015, we have modified our degree tracks to create a path to a 5-year Master of Architecture degree. We maintain our 5-year Bachelor of Architecture degree track as well. In crafting these two alternative degree paths, we sought to make them both excellent choices. Thus the Masters degree track incorporates more coursework on research and leadership in the 8th semester. The Bachelors Degree track incorporates a cooperative education experience in the 8th semester instead. The success of these choices is evident in the fact that each year many students continue to choose the bachelor of architecture degree path. See degree sheets in appendix. Since 2015, our educational approach and philosophy has been clarified and strengthened by the
multi-year collaborative research project on the American School of Architecture, which was started at OU under Bruce Goff in the 1940s. This research project engaged over 100 students, faculty and staff over a 4-year period (2016-2020). It included a series of exhibitions and installations, including one at the 2018 Venice Architecture Biennale, which sought to re-establish the important legacy of the American School for a global audience. We partnered with the OU Libraries to create an archive of American School work, which now includes the work of more than a dozen architects including Mickey Muennig, Donald MacDonald, Harvey Ferrero, Violeta Autumn, and Bob Faust. In 2020, a major exhibition opened at the Fred Jones Jr. Museum of Art and was accompanied by a scholarly catalog. The exhibition showcased new works from the archive. The exhibition was accompanied by the Schools of Thought: Rethinking Design Pedagogy conference, which brought over 100 international scholars to OU. When a pandemic forced the exhibition to close early, our team used a 3D matterport scanner to create a virtual version of the exhibition. Evidence that our goal of putting the American School history back on the map internationally is found in invitations to author essays on the history of the school. Dr. Beatriz Colomina of Princeton invited our team to author an essay to be published in a forthcoming book on radical pedagogies. Dr. Peter Laurence and Professor Joan Ockman invited our team to author another essay on the history of the school for their forthcoming volume on the history of architectural education in North America. Moreover, the project has been featured in: The Architects Newspaper, the Guardian, Domus, JAE, and Metropolis. For more on the American School Project see: https://architecture.ou.edu/the-american-school/

IV. Summary of Responses to Changes in the 2014 NAAB Conditions

University of Oklahoma, 2020 Response: Our Dean, Director and Curriculum Coordinator carefully reviewed the 2014 NAAB Conditions and created a new NAAB course matrix, which reflects the ways in which we anticipate addressing these changes. For each Student Performance Criteria, we have identified the courses where we expect content and skills to be introduced as well as criteria to be met. This new matrix is included in the appendix.

V. Appendices:
 A: Administration and Staff Changes Since 2015
 B: Curriculum Vitae of New Faculty
 C: Action Plans for Addressing Financial Autonomy, Faculty and Staff Support Concerns
 D: Bachelor of Architecture and 5-year accelerated Masters of Architecture Curricula
 E: NAAB Matrix
 E: Syllabi and Selected Assignments for: Methods IV, Methods V, Design V, Methods VII, and Design VII
 F: Examples of Student Work in Attached Files
APPENDIX A: CHANGES IN ADMINISTRATION AND STAFF SINCE 2015

<table>
<thead>
<tr>
<th>Position</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean</td>
<td>Charles Graham</td>
<td>Hans Butzer</td>
</tr>
<tr>
<td>Director of the Division of Architecture</td>
<td>Hans Butzer</td>
<td>Stephanie Pilat</td>
</tr>
<tr>
<td>Associate Dean for College Administration</td>
<td>Richard Ryan</td>
<td>Leehu Loon</td>
</tr>
<tr>
<td>Associate Dean for Academic Programs</td>
<td>Charlie Warnken</td>
<td>Director of Research Initiatives and Strategic Planning (Assistant Dean): Angela Person</td>
</tr>
<tr>
<td>Head Administrator</td>
<td>Kim Goodman</td>
<td>Search underway</td>
</tr>
<tr>
<td>Assistant to the Deans</td>
<td>Melanie Cartwright</td>
<td>Search underway</td>
</tr>
<tr>
<td>Receptionist and staff assistant</td>
<td>Cyndy Higginbottom</td>
<td>Position eliminated</td>
</tr>
<tr>
<td>Public relations and communications</td>
<td>Laura Stone</td>
<td>Position replaced by 4 student interns each of which work 10 hours per week</td>
</tr>
<tr>
<td>Lead student advisor</td>
<td>Suzanne Robinson</td>
<td>Erin Tyler</td>
</tr>
<tr>
<td>Student advisor</td>
<td>Erin Tyler</td>
<td>David Kyncl</td>
</tr>
<tr>
<td>Facilities manager</td>
<td>Jerry Puckett</td>
<td>Jerry Puckett</td>
</tr>
<tr>
<td>IT Staff lead</td>
<td>Justin Davis</td>
<td>Peter Tran</td>
</tr>
<tr>
<td>IT staff</td>
<td>IT staff</td>
<td>Jeff</td>
</tr>
<tr>
<td>IT staff</td>
<td>IT staff</td>
<td>Andrew Rowley</td>
</tr>
<tr>
<td>Digital fabrication shop manager</td>
<td>Hunter Roth</td>
<td>Position vacant since August 2020.</td>
</tr>
<tr>
<td>Directors’ assistant</td>
<td>Janie Allison</td>
<td>Camille Germany</td>
</tr>
</tbody>
</table>
APPENDIX B: NEW FACULTY SINCE 2015

Andres Cavieres
Started August 2015

About
Andres Cavieres is an Assistant Professor in the Division of Architecture, Christopher C. Gibbs College of Architecture at the University of Oklahoma. He has a bachelor and professional degree in Architecture from Universidad de Chile. He earned his Ph.D. in Architecture at the Georgia Institute of Technology, where he started his research on Design Computation, Building Information Modeling and Knowledge Representation in Design.

Before coming to The United States, Andres was a lecturer at Universidad de Chile, where he taught courses in Building Information Modeling, as well as several design studios and research seminars.

During his time at Georgia Tech, Andres was part of the Digital Fabrication Lab (DFL) and Digital Building Lab (DBL), working on the specification Building Information Modeling applications for the masonry industry (BIM-M initiative). He also participated in a large interdisciplinary research project funded by the DoE on solar energy, leading the development of several patent-pending technologies. His work has been published in journals and conference proceedings, and exhibited at the Biennale of Architecture in São Paulo, the Museum of Design of Atlanta (MODA) and the AIA New York’s Center for Architecture. More recently, Andres has been awarded the King Student Medal for Excellence in Architectural + Environmental Research by the Architectural Research Centers Consortium – ARCC.

Education
Georgia Institute of Technology
PhD, Architecture

Georgia Institute of Technology
MS, Architecture

University of Chile
Professional Degree, Architecture

University of Chile
BA, Architecture

Patents

Francesco Cianfarani
Started August 2020

About
Francesco Cianfarani is an Assistant Professor of Architecture at the Christopher C. Gibbs College of Architecture at the University of Oklahoma.

Since 2009 he has been instructor at Sapienza University of Rome, School of Architecture Valle Giulia and School of Civil and Industrial Engineering, Campus in Rieti, in the following fields of education: Design Studio (ICAR/14), Building Design (ICAR/10), History of Contemporary Architecture (ICAR/18).

He earned his PhD in Architectural and Urban Design at Sapienza, DiAP Department, where he participated to national interdisciplinary research programs on the renovation of Italian social housing stock (DiAP Quattro Quartieri: 2014-2017; MIUR PRIN 2007).

As architect he founded his practice in Rome, mostly involved in architectural competitions and works supervisor for retrofit interventions of residential and commercial buildings. His collaborative design and research results have received the attention of International journals and magazines, including Archithese, Paesaggio Urbano, U+D, and exhibited in national architecture exhibitions such as Origine in Rome, and the Stripe Festival in Fermo.

Cianfarani’s main field of research is social housing, investigated through field studies, interdisciplinary design proposals, and socio-historical analyses. On this topic, he has published peer-reviewed papers on International journals and book chapters, including: “The legacy of the official borgate. Design, reception and current life of the Quarticciolo neighborhood,” in Jones, K.B., Pilat S., eds., The Routledge Companion to Italian Fascist Architecture(Routledge, 2020); “L’architettura del Villaggio Olimpico tra forma della casa e forma dell’evento,” in De Matteis F., Reale L., eds., Quattro Quartieri (Quodlibet, 2017).

Parallel to this topic, he is currently working on assessment studies for the adaptive reuse of postindustrial sites in Oklahoma, with a focus on the Tulsa region.

Education
University of Rome Sapienza
PhD, Architectural and Urban Design

University of Rome Sapienza
Math, Architecture

Professional Credentials
Registered Architect, Italy, 2009-2019
Keith Gaddie
Started August 2020

About
Keith Gaddie is President’s Associates Presidential Professor and Executive Faculty Fellow of the University, and Senior Fellow of Headington College. Together with Kim Gaddie and Kirby Goidel of Texas A&M, he edits Social Science Quarterly. Keith is faculty in both the Christopher C. Gibbs College of Architecture and the Gaylord College of Journalism & Mass Communication.

Keith studies the built environment and democratic values, and has special interest in the American South. He and his research partner Jocelyn Evans (University of West Florida) recently completed a systematic study of the evolution of the American courthouse with a focus on the historic homes of the U.S. Supreme Court and also of U.S federal courthouses. This work explores the evolution of the court’s space, its institutional evolution, and its changing culture as a political and social organization. Their current project explores the evolution of the county courthouses of Georgia, applying spatial methodologies to bridge democratic theory and the symbolic and functional design of Antebellum, Reconstruction, and Jim Crow-era public architecture and public space.

Keith is noted as an expert on the American South, voting rights, and redistricting, and has authored or coauthored several books and journal articles. Among his published works are the books Regulating Wetlands Protection (2000), Triumph of Voting Rights In the South (2009), Rise and Fall of the Voting Rights Act (2016), and The Three Governors Controversy: Skullduggery, Machinations, and the Decline of Georgia’s Progressive Politics (2015). His book with Charles S. Bullock III, Georgia Politics in a State of Change (2020), is in its 3rd edition.

He was previously professor of political science at OU (1996-2020) and chair of that department from 2014-2017. He has also served on the faculty of the Tulane University School of Public Health and Tropical Medicine (1992-1996), and has a visiting faculty relationship with Centre College in Danville, Kentucky, teaching ‘Architecture of Democracy‘ in 2015 and 2019.

Education
University of Georgia
PhD, Political Science

University of Georgia
MA, Political Science

Florida State University
BS, Political Science and History

Professional Credentials
Harvard Graduate School of Education,
Institute for Management and Leadership in Education (2018)

Tulane University School of Public Health,
Freeport-McMoRan Environmental Science Postdoctoral Fellowship (1992-1994)

Qualified Expert Witness, for the 2nd, 4th, 5th, 7th, 8th, 10th, and 11th, Federal Circuit Courts

Amici accepted by the U.S. Supreme Court, 2014, 2016, 2017, 2019

American Institute of Architects Associate
René Peralta
Started August 2019

About
René Peralta studied architecture at the New School of Architecture in San Diego and the Architectural Association in London, England. He has been a professor in the Department of Architecture and Urban Design at UCLA, Professor of Urban Design at the University of Washington in St. Louis and, from 2012-2014, was Director of the Master of Science in Architecture with an emphasis in Landscape + Urbanism at Woodbury University in San Diego.

René’s work in recent years explores the contemporary and future forms of the urban border between the United States and Mexico, specifically between the cities of Tijuana and San Diego. René is a coauthor, with Fiamma Montezemolo and Heriberto Yépez, of the book Here is Tijuana, published in 2006 by Black Dog Publishing in London. In 2018, he co-edited, along with Tito Alegría and Roger Lewis, the commemorative edition of the book A Temporary Paradise: A look at the special landscape of the San Diego Region, originally prepared by Kevin Lynch and Donald Appleyard (COLEF 2018).

René is a member of the board of directors of Fundación Esperanza de México (FEM), a non-profit organization with more than 25 years of experience building communities and improving the quality of life of low-income residents of Tijuana through assisted self-built housing.

René is based in Tijuana and, in his spare time, is the conguero for the band “The Good Times” of Tijuana.

Education
Architectural Association,
London

New School of Architecture and Design,
San Diego
Angela Person
Started August 2020

About

Dr. Angela M. Person is Director of Research Initiatives and Strategic Planning for the Christopher C. Gibbs College of Architecture at the University of Oklahoma and lecturer in the OU Department of Geography and Environmental Sustainability. In her role as Director of Research, she supports the Gibbs College in leveraging its resources to drive development of thoughtful, sustainable and experiential solutions to the design problems of the future. She also serves as Diversity Liaison for Gibbs College.

Dr. Person’s research looks at relationships between social and material conditions and individual, community, and public identities. She teaches courses in architectural theory and criticism, architectural methods, environment and society relationships, political geography and human geography. Person earned her PhD from the University of Oklahoma, while studying in the Department of Geography and Environmental Sustainability. She also has a background in museum studies (MA), environmental design (BS), and geology (minor). In her free time, she enjoys designing furniture and interiors with her friend and D-Plei Design partner, Luisa.

Education

<table>
<thead>
<tr>
<th>University of Oklahoma</th>
<th>Professional Credentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD, Geography</td>
<td>American Association of Geographers, Member</td>
</tr>
<tr>
<td>MA, Museum Studies</td>
<td></td>
</tr>
<tr>
<td>BS, Environmental Design, Minor in Geology</td>
<td></td>
</tr>
</tbody>
</table>
Tiziana Proietti
Started August 2019

About
Tiziana Proietti (Rome, 1983) is an architect and Ph.D. in Architectural Design. She gained her doctorate at the Department of Architecture DiAP of the University of Rome Sapienza in 2013, where she worked as teaching assistant from 2008 to 2012. She conducted her Ph.D. studies in collaboration with the University of Technology TUDelft in the Netherlands, where she was hosted as visiting researcher from 2011 to 2013. Her Ph.D. dissertation investigated the use of proportion in architecture through the work and theory of Dutch architect Hans van der Laan.

Tiziana Proietti published several articles and books about proportion in architecture. In particular she is the author of Concinnitas. Principi estetici nell’opera di Leon Battista Alberti (Nuova Cultura, 2010) and Ordine e Proporzione. Dom Hans van der Laan e l’espressività dello spazio architettonico (Quodlibet, 2015). She is currently carrying on a research on the cognitive value of proportion by connecting neuroscience and architecture.

Tiziana Proietti is member of the design studio based in Amsterdam Satyendra Pakhalé Associates since 2013, professor at the Institute of European Design in Rome since 2015, curator of design and architectural exhibitions, and her area of knowledge and interest spans history and theory of architecture and industrial design, theory of proportion, phenomenology, anthropology of senses, neuroaesthetics and sensorial design.

Education
University of Rome Sapienza
PhD, Architectural Design

University of Rome Sapienza
MA, Architecture

Professional Credentials
Rome Art History Network, member since 2012

Istituto Nazionale di Architettura, member since 2013

Hans van der Laan Foundation, member since 2013

Ambiances, member since 2014

Atmospheric Spaces, member since 2014

Architecture, Cultural and Spirituality, member since 2014
APPENDIX C: ACTION PLAN FOR ADDRESSING FINANCIAL AUTONOMY, FACULTY AND STAFF SUPPORT CONCERNS

November 5, 2020
Author: Dean Hans Butzer, Director Stephanie Pilat, Associate Director Marjorie Callahan, Curriculum Coordinator Tony Cricchio

The Challenge and Context
In the past five years, the Division of Architecture has grown dramatically: from 172 students in 2015, to 288 today. While this growth reflects the rising reputation of the program, it has also exacerbated a critical problem. Five years ago, as our NAAB report noted, the Division of Architecture lacked the necessary staff, faculty and budgetary autonomy to flourish. Our recent growth has not been accompanied by increased support but rather by stagnant numbers of full time faculty and diminished staff support. Due to staff cuts and departures and a freeze on new hiring, we have dramatically less staff support now than we did five years ago. In 2015, one staff assistant was shared by seven program directors. Today that same staff assistant now serves as the only assistant to the two Deans and the seven program directors. This leaves the Division of Architecture faculty and their nearly 300 students without any dedicated staff support. At the same time, as our enrollments have grown dramatically, our faculty numbers have failed to keep pace. Thus the need for full time faculty issue of concern identified in 2015 has only worsened. We have gained only a half of one full time faculty member since that time. Year after year of budget cuts to the college, staff layoffs, the former Provost’s decision to reallocate vacant faculty lines to other colleges, a lack of competitive staff and faculty salaries, and hiring freezes have taken a toll.

We here outline two Action Plans to fully address these needs and concerns through the following:

- Exhibit A: Action Plan for Staff and Faculty Support
- Exhibit B: Action Plan for Financial Transparency and Equity

EXHIBIT A: ACTION PLAN FOR STAFF AND FACULTY SUPPORT

Action 1:
Provide one Full Time Equivalent (FTE) faculty per 14-15 students by fall of 2022.
This means we need 18-20 FTE in the Division. We currently have 15.
- **Next steps:** Director Pilat submitted an initial request in July 2020, which was updated in September. Dean Butzer submitted a proposal to the Provost on November 12, 2020, which requests to transition away from temporary funding on an annual basis to a permanent investment in architecture faculty. The proposal requests a permanent increase of $1 million per year for instruction costs to support new tenure-track lines, lecturers and adjuncts in the College of Architecture. The proposal requests funding for 6 new full time faculty starting in the fall of 2021: some of these may be 1 or 2 year appointments; at least four will be tenure track lines; and two of these lines are 2-year teaching fellow appointments.
- **Milestones and deadlines:** Proposal submitted to Provost on November 12, 2020. Provost is studying the issue.
- **Anticipated positive impacts:** Increased faculty lines will ensure we are able to provide qualified faculty to teach required courses, improve mentoring of students and expand and deepen our course offerings. Increased faculty support will improve research outcomes and
mentoring for students and faculty in strategic research areas. Adequate faculty numbers will help ensure equitable teaching loads for architecture faculty. New hires will bring an infusion of fresh perspectives and energy and help attract high caliber graduate students in particular.

Action 2:
Provide a commitment of a full-time dedicated staff member for the Division funded by course fees generated by the Division. Approximately 10-12% of the $400,000 generated in course fees annually by the Division of Architecture will be allocated to funding one staff position for the Division.

- **Next steps:** Dean to finalize course fees budget, gain provost and HR approval.
- **Milestones and deadlines:** Dean to finalize budget request by December 15, 2020. Hiring process to begin by February 2021 with new staff in place by May 2021.
- **Anticipated positive impacts:** A dedicated staff assistant will ensure institutional continuity and knowledge even as Directors transition in and out of service. Having professional staff help manage and operate the program will free up the Directors time to better respond to student and faculty concerns.

Action 3:
Set a benchmark of $280 per credit hour in instructional support for every credit generated by the Division of Architecture in the previous year in order to measure progress on instructional funding support. The Division currently receives approximately $205 per credit hour in instructional support.

- **Next steps:** Dean submitted proposal to the Provost for an increase in instructional support November 12, 2020.
- **Milestones and deadlines:** Provost response requested by December 15, 2020.
- **Anticipated positive impacts:** Stable and predictable support for instruction will ensure a higher quality education for our students by allowing us to attract and retain well qualified and dedicated faculty.

EXHIBIT B: FINANCIAL TRANSPARENCY AND EQUITY ACTION PLAN

Action 1:
In order to continue to improve financial transparency and equity in the Gibbs College of Architecture, the Dean and Directors shall:

1. share details on the amount of course fees and tech fees generated each year;
2. collaborate to propose how to allocate course and tech fees relative to program needs;
3. update and share pay scale for adjuncts in the GCA based on qualifications and experience;
4. refine the framework for allocating new tenure track lines based on: enrollments, growth, credit hour generation, accreditation requirements, faculty teaching loads, and director teaching loads;
5. create and share transparent metrics for allocating Maintenance & Operations support by division, in a way that accounts for enrollments, faculty numbers, number of programs and which incentivizes program growth.

- **Next steps:** A budget workshop to be scheduled in January of 2021, will engage all Directors and Committee A members in discussing which metrics should be used to determine faculty line allocations and budgets in the college. The final decision on metrics and allocations rests with the Dean, but the workshop aims to make the decision making framework more transparent.
• **Milestones and deadlines:** By February 2021, decisions on the five items above shall be finalized and shared.

• **Anticipated positive impacts:** Engaging Directors in planning for course fee allocations will ensure diverse perspectives are represented and resources serve the greatest need. Having an updated pay scale will ensure greater pay equity across the college for adjunct instructors. Divisions aspiring to hire new faculty may be motivated to take action to increase credit hour generation, research productivity and funding, or other goals.

Action 2:
Develop a framework and process for allocating recruiting Graduate Assistant positions according to need in the GCA rather than by program. Develop application process for faculty to apply for research assistants from this pool.

• Action steps: Associate Dean Loon shared a draft proposal with Directors and Dean on November 13, 2020. Associate Dean Loon is revising this draft to be submitted to the Provost in 2020.

• Milestones and deadlines: A final plan shall be in place by March 2021.

• Anticipated positive impacts: Allocating graduate assistant positions based on need rather than program will ensure faculty who teach large courses receive the support they need. This enables faculty to increase student work expectations. Additionally, offering faculty a competitive process for getting GA support ensures these resources are best allocated to support research productivity.

Action 3:
Create a plan for Divisions to be elevated to Departments in the next four years. A component of this shall be the creation of a long-term staffing plan tied to program enrollments, growth and complexity of programs.

We will plan for how to grow staff to normalize the management of our programs so that our staffing is comparable to norms across campus. This may entail a discussion on how to consolidate smaller programs.

• Action steps: Discussions and planning to being in January 2021 workshop with Directors, Committee A and Dean.

• Milestones and deadlines: It is anticipated that all programs in the College shall transition to departments by 2023-24.

• Anticipated positive impacts: Departments will relieve the Dean’s office staff of the responsibility for management of 7 different divisions. Decision making on teaching, resource allocation, students support and more will be possible at the local level of the program. The departmental structure promises greater staff support and may increase financial autonomy.
APPENDIX D: BACHELOR OF ARCHITECTURE AND 5-YEAR ACCELERATED MASTERS OF ARCHITECTURE CURRICULA

REQUIREMENTS FOR THE BACHELOR OF ARCHITECTURE

CHRISTOPHER C. GIBBS COLLEGE OF ARCHITECTURE

THE UNIVERSITY OF OKLAHOMA

For Students Entering the Oklahoma State System for Higher Education
Summer 2018 through Spring 2019

<table>
<thead>
<tr>
<th>Year</th>
<th>FIRST SEMESTER</th>
<th>Hours</th>
<th>SECOND SEMESTER</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 1163, Methods I - Materiaity of Place</td>
<td>3</td>
<td>ARCH 1263, Methods II - Patterns of Architecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARCH 1155, Design I - Design Fundamentals</td>
<td>5</td>
<td>ARCH 1255, Design II - Craft & Making</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ENGL 1113, Principles of English Composition (Core I)</td>
<td>3</td>
<td>ENGL 1213, Principles of English Composition (Core I), or</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 1523, Pre-calculus and Trigonometry (Core I)</td>
<td>3</td>
<td>EXPO 1213, Expository Writing (Core I)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>14</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SUMMER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 1113, American Federal Government (Core III)</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HIST 1483 or 1493, U.S. History (Core IV)</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>6</td>
<td>TOTAL CREDIT HOURS</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SOPHOMORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 2243, History of the Built Environment I (Core IV)</td>
<td>3</td>
<td>ARCH 2243, History of the Built Environment II (Core IV)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARCH 4453, Modern & Contemporary Architecture</td>
<td>3</td>
<td>ARCH 2463, Methods IV - Sustainable and Resilient Systems I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARCH 2356, Design III - Crafting Place</td>
<td>6</td>
<td>ARCH 2456, Design IV - Materials & Making</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Natural Science, with lab-(Core II) from approved Gen. Ed. list</td>
<td>4</td>
<td>ARCH 4193, Architectural Structures I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>16</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SUMMER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 open elective (upper division)</td>
<td>3</td>
<td>15 open elective (upper division)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SOCIAL SCIENCE - Advised Elective (Core III)</td>
<td>3</td>
<td>SOCIAL SCIENCE - Advised Elective (Core III)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>6</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>JUNIOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 4233, Architectural Structures II</td>
<td>3</td>
<td>ARCH 4000, Foreign Study (may be taken any semester)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ARCH 4453, Modern & Contemporary Architecture</td>
<td>3</td>
<td>ARCH 4543, Architectural Theory and Criticism</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARCH 4563, Methods V - Sustainable and Resilient Systems II</td>
<td>3</td>
<td>ARCH 4663, Methods VI - Urban Design Methodologies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARCH 3556, Design V - Architectural Making I</td>
<td>6</td>
<td>ARCH 3656, Design VI - Architectural Making II</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15 open elective (upper division)</td>
<td>3</td>
<td>15 open elective (upper division)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SENIOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 4333, Advanced Structures</td>
<td>3</td>
<td>ARCH 4160, Internship (shall comply to the program internship guidelines)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ARCH 4723, Methods VII-Advanced Systems</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARCH 4756, Design VII-Systems & Context (Capstone)</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NON-WESTERN CULTURE - (CORE IV), upper-division Understanding Artistic Forms — (Core IV)*</td>
<td>3</td>
<td>NON-WESTERN CULTURE - (CORE IV), upper-division Understanding Artistic Forms — (Core IV)*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>18</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5TH YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 4923, Methods IX-Entrepreneurial Architect & Leadership</td>
<td>3</td>
<td>ARCH 4053, Methods X - Tools of Practice</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARCH 4956, Design IX - Options Studio I</td>
<td>6</td>
<td>ARCH 4056, Design X - Options Studio II (Core V)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>15 open elective (upper division)</td>
<td>3</td>
<td>15 open elective (upper division)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15 open elective (upper division)</td>
<td>3</td>
<td>15 open elective (upper division)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td>TOTAL CREDIT HOURS</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Admission to the BARCH or the accelerated MARCH degree program requires an application and portfolio review during the spring semester of the third year.

University-Wide General Education Requirements (minimum 40 hours)

Courses designated as Core I, II, III, IV, or Capstone are part of the General Education curriculum. Students must complete a minimum of 40 hours of General Education courses, chosen from the approved list, including at least one upper division Gen. Ed. course outside of the student’s major. Courses graded ‘S’ or ‘PDP’ will not apply.

Core I
- Symbolic and Oral Communication (9-19 hours, 3-5 courses)
 - English Composition 6-9 hours, 3 courses
 - Mathematical 3 hours, 1 course
 - Foreign Language 0-10 hours, 2 courses in the same language (which can be met by successfully completing two years of the same foreign language in high school)
 - Other (courses such as communication, logic or public speaking)

Core II
- Natural Science (7 hours, 2 courses)

Core III
- Social Science (6 hours, 2 courses)
 - One course must be PSYC 1113, “American Federal Government”

Core IV
- Humanities (12 hours, 4 courses)
 - Understanding Artistic Forms- 3 hours, 1 course
 - Western Civilization and Culture-6 hours, 2 courses, including HIST 1483 or HIST 1493
 - Non-Western Culture-3 hours, 1 course

Senior Capstone Experience (6 hours, 1 course – as required by the College of Architecture)
Accelerated Degree Requirements for the Bachelor of Science in Architectural Studies and Master of Architecture Degrees

Christopher C. Gibbs College of Architecture — The University of Oklahoma

For Students Entering the Oklahoma State System for Higher Education Summer 2018 through Spring 2019

Credit Hours and Grade Average Requirements
- **Total Credit Hours**: 168
- **Minimum Upper-Division Hours Required**: 48
- **Minimum Retention/Graduation Grade Point Averages**: 2.50
- **Minimum OU Retention GPA**: 2.50
- **Minimum Combined Retention GPA**: 2.50
- **Minimum GPA on all Required Professional Courses**: 2.50

OU encourages students to complete at least 34 hours of applicable coursework each year to have the opportunity to graduate in five years.

A minimum grade of C is required in all major coursework.

All first year courses are to be completed before advancing to the second year unless otherwise approved by the Architecture Division Director.

Year by Year Requirements

Freshman

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>SECOND SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 1163, Methods I - Materiality of Place</td>
<td>ARCH 1263, Methods II - Patterns of Architecture</td>
</tr>
<tr>
<td>ARCH 1155, Design I - Design Fundamentals</td>
<td>ARCH 1255, Design II - Craft & Making</td>
</tr>
<tr>
<td>ENGL 1113, Principles of English Composition (Core I)</td>
<td>ENGL 1213, Principles of English Composition (Core I), or ENGL 1214, Principles of English Composition (Core II)</td>
</tr>
<tr>
<td>MATH 1523, Pre-calculus and Trigonometry (Core I)</td>
<td>EXPO 1213, Expository Writing (Core I)</td>
</tr>
<tr>
<td>PHYS 1114, Physics for Non-Science Majors (Core II)</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CREDIT HOURS: 14

Sophomore

<table>
<thead>
<tr>
<th>SUMMER</th>
<th>FRESHMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 1113, American Federal Government (Core III)</td>
<td>ARCH 2243, History of the Built Environment I (Core IV)</td>
</tr>
<tr>
<td>HIST 1483 or 1493, U.S. History (Core IV)</td>
<td>ARCH 2463, Materials and Form</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS: 6</td>
<td>TOTAL CREDIT HOURS:</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>SUMMER</th>
<th>FRESHMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Elective (upper division)</td>
<td>ARCH 4233, Architectural Structures II</td>
</tr>
<tr>
<td>Social Science - Advised Elective (Core III)</td>
<td>ARCH 4453, Modern & Contemporary Architecture</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS:</td>
<td>TOTAL CREDIT HOURS:</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>SUMMER</th>
<th>FRESHMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 4723/5723, Methods VII - Advanced Systems</td>
<td>ARCH 4800, Foreign Study (may be taken any semester)</td>
</tr>
<tr>
<td>ARCH 4756/5536, Graduate Architectural Design III (Capstone)</td>
<td>ARCH 4863, Methods VI - Urban Design Methodologies</td>
</tr>
<tr>
<td>ARCH 5333, Advanced Structures</td>
<td>ARCH 5365, Design VI - Architectural Making II</td>
</tr>
<tr>
<td>Non-Western Culture - (Core IV), upper-division</td>
<td>Open Elective (upper division)</td>
</tr>
<tr>
<td>Understanding Artistic Forms — (Core IV)*</td>
<td>Open Elective (upper division)</td>
</tr>
<tr>
<td>TOTAL CREDIT HOURS:</td>
<td>TOTAL CREDIT HOURS:</td>
</tr>
</tbody>
</table>

5th Year

TOTAL CREDIT HOURS: 18

University-Wide General Education Requirements (minimum 40 hours)

Courses designated as Core I, II, III, IV, or Capstone are part of the General Education curriculum. Students must complete a minimum of 40 hours of General Education courses, chosen from the approved list, including at least one upper-division Gen. Ed. course outside of the student’s major. Courses graded S/U or P/NP will not apply.

Core I
- Symbolic and Oral Communication (9-19 hours, 3-5 courses) - English Composition 4 hours, 2 courses
- Mathematical 3 hours, 1 course
- Foreign Language 0-10 hours, 2 courses in the same language (which can be met by successfully completing two years of the same foreign language in high school)
- Other (courses such as communication, logic or public speaking)

Core II
- Natural Science (7 hours, 2 courses)
- Courses must be taken from different disciplines in the biological and/or physical sciences; one of which must include a laboratory.

Core III
- Social Science (6 hours, 2 courses)
- One course must be FSC 1113, “American Federal Government”

Core IV
- Humanities (12 hours, 4 courses)
 - Understanding Artistic Forms - 3 hours, 1 course
 - Western Civilization and Culture 6 hours, 2 courses, including HIST 1483 or HIST 1493
 - Non-Western Cultures 3 hours, 1 course

Senior Capstone Experience (6 hours, 1 course - as required by the College of Architecture)
APPENDIX E: NAAB CRITERIA CURRICULUM MATRIX

REALM A: CRITICAL THINKING AND REPRESENTATION

<table>
<thead>
<tr>
<th>CRITICAL THINKING AND REPRESENTATION</th>
<th>BUILDING PRACTICES, TECHNICAL SKILLS, AND KNOWLEDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5.</td>
<td>B5.</td>
</tr>
</tbody>
</table>

REALM B: INTEGRATED ARCHITECTURAL SOLUTIONS

<table>
<thead>
<tr>
<th>INTEGRATED ARCHITECTURAL SOLUTIONS</th>
<th>REALM C: UNDERSTAND AND PRACTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1.</td>
<td>D1.</td>
</tr>
<tr>
<td>C2.</td>
<td>D2.</td>
</tr>
<tr>
<td>C3.</td>
<td>D3.</td>
</tr>
<tr>
<td>C5.</td>
<td>D5.</td>
</tr>
</tbody>
</table>

REALM D: LEADERSHIP AND PRACTICE

<table>
<thead>
<tr>
<th>LEADERSHIP AND PRACTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.</td>
</tr>
<tr>
<td>D2.</td>
</tr>
<tr>
<td>D3.</td>
</tr>
<tr>
<td>D4.</td>
</tr>
</tbody>
</table>

NAAB STUDENT PERFORMANCE CRITERIA / COURSES

- MARCH1016: DESIGN I, AN INTRODUCTION TO THE REALM
- MARCH1036: DESIGN II, AN INTRODUCTION TO THE REALM
- MARCH1046: DESIGN III, AN INTRODUCTION TO THE REALM
- MARCH1056: DESIGN IV, AN INTRODUCTION TO THE REALM
- MARCH1066: DESIGN V, AN INTRODUCTION TO THE REALM
- MARCH1076: DESIGN VI, AN INTRODUCTION TO THE REALM
- MARCH1086: DESIGN VII, AN INTRODUCTION TO THE REALM
- MARCH1096: DESIGN VIII, AN INTRODUCTION TO THE REALM
- MARCH1106: DESIGN IX, AN INTRODUCTION TO THE REALM
- MARCH1116: DESIGN X, AN INTRODUCTION TO THE REALM

MARCH D1: DESIGN I, AN INTRODUCTION TO THE REALM

Introduction to the material:

REALM A: CRITICAL THINKING AND REPRESENTATION

- CRITICAL THINKING AND REPRESENTATION
- CRITICAL THINKING AND REPRESENTATION
- CRITICAL THINKING AND REPRESENTATION
- CRITICAL THINKING AND REPRESENTATION
- CRITICAL THINKING AND REPRESENTATION
- CRITICAL THINKING AND REPRESENTATION
- CRITICAL THINKING AND REPRESENTATION
- CRITICAL THINKING AND REPRESENTATION

REALM B: INTEGRATED ARCHITECTURAL SOLUTIONS

- INTEGRATED ARCHITECTURAL SOLUTIONS
- INTEGRATED ARCHITECTURAL SOLUTIONS
- INTEGRATED ARCHITECTURAL SOLUTIONS
- INTEGRATED ARCHITECTURAL SOLUTIONS
- INTEGRATED ARCHITECTURAL SOLUTIONS
- INTEGRATED ARCHITECTURAL SOLUTIONS
- INTEGRATED ARCHITECTURAL SOLUTIONS
- INTEGRATED ARCHITECTURAL SOLUTIONS

REALM C: UNDERSTAND AND PRACTICE

- UNDERSTAND AND PRACTICE
- UNDERSTAND AND PRACTICE
- UNDERSTAND AND PRACTICE
- UNDERSTAND AND PRACTICE
- UNDERSTAND AND PRACTICE
- UNDERSTAND AND PRACTICE
- UNDERSTAND AND PRACTICE
- UNDERSTAND AND PRACTICE

REALM D: LEADERSHIP AND PRACTICE

- LEADERSHIP AND PRACTICE
- LEADERSHIP AND PRACTICE
- LEADERSHIP AND PRACTICE
- LEADERSHIP AND PRACTICE
- LEADERSHIP AND PRACTICE
- LEADERSHIP AND PRACTICE
- LEADERSHIP AND PRACTICE
- LEADERSHIP AND PRACTICE
<table>
<thead>
<tr>
<th>REALM A</th>
<th>REALM B</th>
<th>REALM C</th>
<th>REALM D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Communication Skills</td>
<td>Design Thinking Skills</td>
<td>Investigative Skills</td>
<td>Architectural Design Skills</td>
</tr>
<tr>
<td>Prof. 1</td>
<td>Design 1</td>
<td>Investigative 1</td>
<td>Architectural 1</td>
</tr>
<tr>
<td>Prof. 2</td>
<td>Design 2</td>
<td>Investigative 2</td>
<td>Architectural 2</td>
</tr>
<tr>
<td>Prof. 3</td>
<td>Design 3</td>
<td>Investigative 3</td>
<td>Architectural 3</td>
</tr>
<tr>
<td>Prof. 4</td>
<td>Design 4</td>
<td>Investigative 4</td>
<td>Architectural 4</td>
</tr>
</tbody>
</table>

Courses

REALM A:
- Pre-design
- Site design
- Codes and regulations
- Technical documentation
- Structural systems
- Environmental systems
- Building envelope systems and assemblies
- Building materials and assemblies
- Building service systems
- Financial considerations
- Research (theoretical and applied methods and practices)
- Integrated evaluations and decision making
- Design process
- Integrative design
- Stakeholder roles in architecture
- Project management
- Business practices
- Legal responsibilities
- Professional conduct

REALM B:
- Pre-design
- Site design
- Codes and regulations
- Technical documentation
- Structural systems
- Environmental systems
- Building envelope systems and assemblies
- Building materials and assemblies
- Building service systems
- Financial considerations
- Research (theoretical and applied methods and practices)
- Integrated evaluations and decision making
- Design process
- Integrative design
- Stakeholder roles in architecture
- Project management
- Business practices
- Legal responsibilities
- Professional conduct

REALM C:
- Cultural diversity and social equity
- Pre-design
- Site design
- Codes and regulations
- Technical documentation
- Structural systems
- Environmental systems
- Building envelope systems and assemblies
- Building materials and assemblies
- Building service systems
- Financial considerations
- Research (theoretical and applied methods and practices)
- Integrated evaluations and decision making
- Design process
- Integrative design
- Stakeholder roles in architecture
- Project management
- Business practices
- Legal responsibilities
- Professional conduct

REALM D:
- Pre-design
- Site design
- Codes and regulations
- Technical documentation
- Structural systems
- Environmental systems
- Building envelope systems and assemblies
- Building materials and assemblies
- Building service systems
- Financial considerations
- Research (theoretical and applied methods and practices)
- Integrated evaluations and decision making
- Design process
- Integrative design
- Stakeholder roles in architecture
- Project management
- Business practices
- Legal responsibilities
- Professional conduct

Appendix 7
ARCH 4756 Design VII – Systems and Context

The University of Oklahoma – College of Architecture – Fall 2019

Gould Hall B50: Monday, Wednesday, Friday 1:30 – 5:20 PM

Daniel Butko – AIA, NCARB, LEED AP, ASA
Associate Professor
405.325.9411 butko@ou.edu
M W F 11:00 AM – noon, Gould 265

Samuel Callahan
Assistant Professor
samcallahan@ou.edu
M W F 11:00 AM – 12:30 PM, Gould 260

Revit instructor David Sanders dmsanders07@gmail.com

Course Catalog Description
ARCH 4756 Design VII – Systems and Context Prerequisites: ARCH 4543, ARCH 4663, ARCH 3656 with a grade of C or better. Co-requisites: ARCH 4723, or permission of director. This capstone course emphasizes the relationship of schematic design to contract documents through a broad exploration of structural, mechanical, electrical, plumbing, and other systems within buildings. Students demonstrate an understanding of drafting conventions, the production of traditional contract documents, Building Information Modeling, and the communication of additional solutions necessary for construction. A major component of the course is dedicated to developing interdisciplinary and collaborative skills through team-based projects and other small group exercises (F) (K)

ARCH 5536 – Graduate Architectural Design III. Prerequisite: Program admission or permission of graduate liaison. Emphasis is on the relationship of schematic design to contract documents in order to understand structural, mechanical, electrical, plumbing, and other systems within buildings. Students demonstrate an understanding of drafting conventions, the production of traditional contract documents, Building Information Modeling, and the communication of additional solutions necessary for construction. A major component of the course is dedicated to developing interdisciplinary and collaborative skills through team-based projects and other small group exercises.

Goals and Additional Description
Precedent projects and their associated programming are also explored as an influence on the overall design process. Issues related to structural systems, thermal control systems, sustainability, basic codes, life safety, site and building access, vehicular relationships, and building orientation will be woven into the design process. This course will also introduce software as a means to integrate climatic conditions, building and site orientations, materials, and thermal control.

Assignments and projects continue to demonstrate a development of design vocabulary through verbal, graphic, and physical modeling communications. Graphic communication skills will be advanced through the application of physical and virtual forms of drawing and modeling. Projects demonstrate a relational understanding of the topics presented in the Structures, Materials, History, and Methods courses. Various Vignettes will be accomplished throughout the semester to introduce and explore ideas necessary to prepare for the final project.

Graduate Assignments:
The Masters of Architecture is considered the terminal degree for professional programs. In practice, M.Arch graduates are expected to contribute to the dialogue and considered to be mentors to the undergraduates. ARCH 5536 is a separate section taught by Professor Butko which will include additional and different assignments than ARCH 4756. The assignments will include independent research and presented to the entire class for discussion. See separate syllabus for more information.

Pedagogy
The instructional and learning environment in this studio may or may not be different from previous studios and academic experiences due to the frequency of assignments, and emphasis on conceptual thought along with practical solutions to basic programmatic elements. Process is extremely important for both the learning process and what is conveyed during presentations.

The use of desk critiques, group discussions, and guest lectures will be an integral part of the learning process where students are responsible for presenting and discussing concepts individually and in front of numerous classmates, colleagues, and critics. The requirement places the student in a position to explain their project at any time in front of the whole class. The experience of discussing ideas to fellow colleagues in an articulated way is imperative to a successful education in architecture. Students must be prepared for each class – this includes reading assignments, research studies, design assignments, and presentations. The architectural studio has always been an inclusive environment where students learn not only from the professor, but also from each other. The expectation that you work in the studio beyond the required class time is not only encouraged, but has been documented to be beneficial to the knowledge base building required to become good problem solvers in our profession.

NAAB Criteria:
This course meets the following performance criteria from the 2014 NAAB Conditions for Accreditation during the semester: For the current conditions and procedures visit: http://www.naab.org/accreditation/program-resources/current-conditions-and-procedures/

PART TWO (II): SECTION 1—STUDENT PERFORMANCE—EDUCATIONAL REALMS AND STUDENT PERFORMANCE CRITERIA

Please note that due to the page limit constraints, we have included only four key syllabi here—For Design VII, Methods VII, Design V, and Methods IV. These courses test address B.2 Accessibility (now Codes and Regulations), B.3 Sustainability (now spread throughout Realm B), and 4 Site Design. We would be happy to provide additional materials on request.
The accredited degree program must demonstrate that each graduate possesses the knowledge and skills defined by the criteria below. The knowledge and skills defined here represent those required to prepare graduates for the path to internship, examination, and licensure and to engage in related fields. The program must provide student work as evidence that its graduates have satisfied each criterion. The criteria encompass two levels of accomplishment:

- **Understanding**: The capacity to classify, compare, summarize, explain, and/or interpret information.
- **Ability**: Proficiency in using specific information to accomplish a task, correctly selecting the appropriate information, and accurately applying it to the solution of a specific problem, while also distinguishing the effects of its implementation.

Undergrad Section

Students will be introduced to the following NAAB criteria:

- A.3 Investigative Skills
- A.4 Architectural Design Skills
- A.6 Use of Precedents
- B.2 Site Design
- B.3 Codes and Regulations
- B.6 Environmental Systems
- C.3 Integrative Design

Students will demonstrate understanding in regards to the following:

- A.3 Investigative Skills
- A.4 Architectural Design Skills
- A.6 Use of Precedents
- B.2 Site Design
- B.3 Codes and Regulations
- B.6 Environmental Systems
- C.3 Integrative Design

Students will demonstrate ability in regards to the following:

- A.3 Investigative Skills
- A.4 Architectural Design Skills
- A.6 Use of Precedents
- B.2 Site Design
- B.3 Codes and Regulations
- B.6 Environmental Systems
- C.3 Integrative Design

Grad Section

Students will be introduced to the following NAAB criteria:

- A.3 Investigative Skills
- A.4 Architectural Design Skills
- A.6 Use of Precedents
- B.1 Pre-Design
- B.4 Technical Documentation
- B.5 Structural Systems
- B.7 Building Envelope Systems
- B.10 Financial Considerations
- C.1 Research

Students will demonstrate understanding in regards to the following:

- A.3 Investigative Skills
- A.4 Architectural Design Skills
- A.6 Use of Precedents
- B.1 Pre-Design
- B.4 Technical Documentation
- B.5 Structural Systems
- B.7 Building Envelope Systems
- B.10 Financial Considerations
- C.1 Research

Students will demonstrate ability in regards to the following:

- A.2 Design Thinking Skills
- A.3 Investigative Skills
- A.4 Architectural Design Skills
- A.6 Use of Precedents
- B.2 Site Design
- B.3 Codes and Regulations
- B.6 Environmental Systems
- C.3 Integrative Design

Studio Conduct

Each student is expected to work in studio. Appropriate media and materials are expected to be in the studio at all times. These may include a laptop computer and software, tracing paper, pencil and pens for sketching, scales, and model making materials. It is each student's responsibility to be prepared at all times during studio for class critiques. Due to the size and space of the studio, please respect others' need for a quiet, supportive, and academic environment. Headphones/earbuds are allowed, but students are not permitted to watch videos during class time. Visitors are not permitted in the design studio during class hours unless previously discussed and approved by the professor. Students are responsible for keeping the design studios clean and neat at all times to promote a healthy educational environment. At the conclusion of the semester, students must remove all projects, supplies, and personal equipment. Your final grade for the class will be held if the area is not clean and presented the way it looked the first day of class. Studio cleanup dates and times are listed below.

The professors will make personal books available to the class until such time that a book is lost or stolen. Please keep these books in the studio with reasonable security.

Attendance

Regular formal and informal interaction with faculty and peers during scheduled studio time is key to a successful teaching and learning process in a professional program. Full course participation by all students is the normal expectation of our program in Architecture. This participation will be reflected in factors such as regular class participation in class discussions and reviews, relationship of the development of project work with the studio, and positive interaction with faculty and classmates. It is essential that you come to studio prepared to display and discuss your ideas. Late pinups will not be allowed to present and will result in a “0” grade for that presentation. If you know you will be absent, tardy, or need to leave early please inform your professor prior to the date so we can plan accordingly. You may drop this course with a grade of "W" at any time prior to and by the appropriate drop date. See your Course Schedules for dates. YOU ARE COMPLETELY RESPONSIBLE FOR DROPPING THE COURSE! The professor cannot drop a student from the course for any reason. Professors may drop a few class periods due to standing project commitments or academic conference, but various instructors will be covering the course content in class those days. Students are still required to attend class and submit work based upon the syllabus and assigned projects.
Required Texts, Codes, Materials, and Tools:

- The Architect’s Studio Companion: Rules of Thumb for Preliminary Design
 Hardcover: 496 pages, Publisher: Wiley, 5th or 6th edition.
- Introduction to Architectural Technology, 1st or 2nd edition
- A variety of drawing and modeling tools and supplies to be discussed in class

Recommended Texts, Codes, Materials, and Tools:

- Conceptualization, development of given program, design development including MEP, acoustics, lighting, structure, thermal, etc., cost analysis, representation (3.1–3.3)
- Additional requirements for Grads
 Models, and Prototyping
 Range of options from monolithic to environmentally-based hybridized/wrapped structures
 2 weeks initially, remaining is simultaneous with Design Process

Student Project Blog/Website

Grading in studio is somewhat subjective and somewhat objective, but is based on development, advancement, enthusiasm, willingness to learn, exemplifying an understanding of the coursework, and work produced. Students are expected to communicate ideas through various mediums, express clarity of thought, and engage the audience. A defined rubric will be distributed for each portion or project.

Tentative Schedule (subject to change per professors’ discretion)

- Students are required to: show progress each class period and participate in the mid/preliminary project review and final presentation
- Assignments and grading are subject to change without notice, but key portions are currently scheduled as:
 - Assignment 1: Researching resiliency and systems (precedent studies, literature review, etc.) 5% for Grads
 - Assignment 2: Research topics 9% for Grads
 - Additional requirements for Grads
 - Begin Student Project Blog/Website
 - Conceptual Design: Norman / Moore Center for Resilient Design Education
 - Final deliverables and presentation of project with required drawings and models - December 6 in the gallery (content, composition, and visual delight)

The framework of the studio will be through the execution of and submittal to the 2019-2020 COTE student competition focused upon a Center for Resilient Design Education showcasing experimental passive prototypical design, particular to materials, MEP, lighting, acoustics, site, and environmental interaction.

Possible CNS, LA, and/or ID collaboration may be scheduled throughout semester per professors’ discretion.

Students are required to incorporate REVIT for all software development. A range and hybrid of software and hand drawings are permitted, encouraged, and expected throughout the semester. Possible CNS, LA, and/or ID collaboration may be scheduled throughout semester per professors’ availability and discretion.
COURSE SCHEDULE (SUBJECT TO CHANGE PER PROFESSORS’ DISCRETION)

Week 1
8/19
Introductions (students and professors), seating arrangements
Get acquainted and welcome students to Gould Hall
Review syllabus, assignments, teaching styles, and class trip prep
Discuss overall semester project utilizing analogous methodologies to assist with understanding systems, structures, and envelopes
Overview of semester timeline, COTE requirements, and inform students of numerous readings on CANVAS and in-class documents – create one course location

Week 2
8/21
Work day and desk crits
pinned up by 3:30 PM

Week 3
8/24
Assignment 1 DUE – posted on Canvas and revised prints up by 2:00 PM

Week 4
9/9
3.1 DUE 1:30 PM
Work day and desk crits, preliminary 3.1 presentation

Week 5
9/16
4th year field trip to Texas (photo montage and written synopsis)
9/17
4th year field trip to Texas
9/18
Graduate Student Workshop 11:30am-1:30pm (Research & Scholarly Writing Fundamentals)
Texas assignment DUE
Work day and desk crits
9/20
Work day and desk crits
Initial 3.2 due for review

Week 6
9/23
Work day and desk crits
3.2 DUE, Assign 3.3 Exterior Enclosure
9/25
AXP workshop 12:30 – 1:20 PM
In-class lectures, work day, and desk crits
9/27
Work day and desk crits
Initial 3.3 due for review

Week 7
9/30
Work day and desk crits
3.3 DUE
10/2
In-class lectures, work day, and desk crits
10/4
Work day and desk crits

Week 8
10/7
Mid semester review (3.3 included in review). Work due 10:00 PM on 10/6.
10/9
AXP workshop 12:30 – 1:20 PM
ASSIGN 3.4 Wall Assemblies
Work day and desk crits – Discussion about review, impact on project
10/11
OU / TX game – no class

Week 9
10/14
Work day and desk crits
Initial 3.4 due for review
10/16
In-class lectures, work day, and desk crits
3.4 DUE, ASSIGN 3.5 HVAC
10/18
Work day and desk crits

Week 10
10/21
Work day and desk crits
CNS students visit
Initial 3.5 due for review
In class lectures, work day, and desk crits

Week 11
10/28 Work day and desk crits
CNS students visit
10/30 AXP workshop 12:30 – 1:20 PM
In class lectures, work day, and desk crits
due

11/1 Work day and desk crits

Week 12
11/4 Assignment 3 project review
Assign Assignment 4
11/6 In class lectures, work day, and desk crits
11/8 Work day and desk crits

Week 13
11/11 Work day and desk crits
11/13 Work day and desk crits
11/15 Work day and desk crits

Week 14
11/18 In class lectures, work day, and desk crits
Project Boards – feedback review
11/20 Work day and desk crits
11/22 Work day and desk crits

Week 15
11/25 Updated Project Boards – required as part of grade
2nd year final presentations

11/27 Thanksgiving – no class, but keep working!

11/29 Thanksgiving – no class, but keep working!

Week 16
12/2 3rd year final presentations, 4th year final presentations
12/4 3rd year final presentations
12/5 Final project due 10:00 pm

12/6 4th year and Grad III final presentations

Week 17 - Exam Week
12/11 8:00 – 10:00 AM mandatory clean studio time

In the Division of Architecture, students are required help clean and reset the studio during the Final Exam period for this course. Failure to participate in this session will result in a 10% grade reduction. At the end of this session, students must remove all projects, supplies, and personal equipment.

12/14 COTE Submittal, Final Plot, Model, Digital Images updated from FINAL PRESENTATION on CANVAS
due 5:00 PM

Midterm and Final presentation dates are defined, but projects are due 10:00 PM the previous evening per the instructor’s instructions.

Don’t forget Vitruvius –

limites (durability)
utilitas (function)
venustas (beauty)

Course Presentation, Guidelines and Evaluation

Unless otherwise indicated, students are to complete the course requirements as individuals. Any indication that students are doing otherwise will result in the maximum ramifications as allowed by University Policy. In the case of group assignments, all members are expected to contribute to their best potential. Unless stated otherwise, a single copy of the completed assignment, with the names of the group members on the cover sheet, will suffice. The instructor retains the right to have group members grade the performance of all the other members of their group. To receive your final grade, final documentation of all work will be required and submitted before the end of the semester. The final documentation will be in printed and electronic form.

Field Trip and Enrichment Experience

We will have a field trip during September. This trip is intended to expand student knowledge of material tectonics, integrated systems, and sustainable construction in a specific context. Student costs will be determined during the first week of class.

Sketchbook

It is required that you keep a sketchbook for this class for use to take notes during lectures and pin-ups and to document the design process. Be prolific in words and sketch. Sketchbooks are your personal documentation (like a journal) and will not be graded or evaluated as part of your grade unless you choose to show the work as part of a presentation or desk critique toward a project grade. The use of sketchbooks will be allowed during quizzes, discussions, field trips, desk crits, and reviews.

Photography

Use a camera to document ideas you encounter about materials, design features and human response to spaces. More importantly, your camera can help you see more critically and improve your composition skills. Look at the work of architectural photographers. Learn from the compositional methods they use and apply to your presentation drawings. Compare your photographs with care, thinking about background, lighting, visual axes. Compare what you see in your photographs with what you thought you saw in real life. Is there stuff in the photo you didn’t notice before snapping the picture? Do as much editing "in camera" as possible and you will start to appreciate how much clutter is in the built environment. Much of that built environment clutter is poorly integrated systems; carelessly placed electrical devices, surface mounted conduit, poorly arranged ceiling elements such as lighting and air grilles, structural elements poorly integrated into the architecture, etc.

Photography can help you see the opportunities to bring these sorts of issues under control, improve your ability to see and compose better presentation views of your projects.
Students will demonstrate understanding in regards to the following:

4723
B.4 Building Materials and Assemblies

5723
B.6 Building Envelope Systems

Students will demonstrate ability in regards to the following:

4723
B.4 Technical Documentation

5723
B.6 Environmental Systems

Pedagogical Methods of Instruction:
Illustrated lectures are given on the technology, design concepts, and detailing expression of wood, masonry, metal, glass, and concrete. Examples of historic and contemporary architecture are analyzed. Text reading is assigned. Student progress is evaluated through assignments, quizzes, exams, and a project integrated into studio. Field trips and site visits may also be offered throughout the semester.

Required Text:

Homework, Quizzes and Exam questions will be based upon class lectures and assigned readings in this textbook. Class attendance and participation, homework assignments, quizzes, exams, and a project integrated into studio. Field trips and site visits may offer opportunities for collaboration with other disciplines will be presented at various points during the course of the semester.

Recommended Software:
Students will be required to have access to the following software for the course:

- AutoCAD
- Revit
- ArchiCAD
- Archicad
- Tekla
- Bentley Systems
- ParaSite
- EnergyPlus

These excellent resources are free to use in your library. A variety of recommend software is used by the program to create the design.

Recommended Texts:
- Oil's Construction - Principles, Materials, and Methods, 9th Edition by Simmons
- Building Construction Illustrated, 4th Edition by Ching
- Architect's Handbook of Construction Detailing, 2nd Edition by Ching
- The Architect's Studio Companion, 5th Edition by Allen and Lando
- Materials For Design by Victoria Ballard Bell
- The Fundamentals of Environmental Design, 2nd Edition by Farshid Moussam

These excellent resources are available in your library. You will receive various recommended textbooks periodically throughout the semester, but only require the Vaughn Bradshaw textbook. Previous editions of recommended textbooks are sufficient if you already own them or find them for sale.

Recommended Software:
The Heat, Air, and Moisture (HAA/M) Toolkit software for Windows

GreenGuruConsult.com software for Windows and MAC

http://www.energycodesystems.org/energy

Attendence:
Class attendance is mandatory. Two (2) excused absences are allowed during the entire semester. Excused absences require a doctor's note submitted to the professor. One (1) unexcused absence is allowed during the entire semester. Absences beyond the allowed limits will result in grade reduction, an incomplete, or failing the course. Please attend class to avoid these consequences.
Class Cancellation:
In the event that class is cancelled, an email will be sent out and/or an announcement will be posted on the CANVAS site. Rumors of cancelled class do not constitute a reason for missing class. Please check your email and CANVAS prior to scheduled class time.

Class time:
Typically class will be held in Gould Hall room 360 from 9:30 – 10:20 AM Mondays, Wednesdays, and Fridays. There will likely be a couple times during the semester where field trips or an alternative class location (required for locations within reasonable walking distance from class and optional for other locations) should occur at a different meeting time. It will be discussed in class prior to the trip and will substitute for a regularly scheduled class period. I expect everyone to be class faithfully regularly. Class starts at 9:30 AM, NOT 9:05, 9:45, or whenever you feel like arriving. I am very punctual and only arrive early to class on time. Please expect your classmates and me to arrive to class before or at least on time to avoid falling behind in class, missing quizzes, and interrupting lectures and discussions. I also hope you actually want to be here on time since this is such an awesome class.

Office hours:
Office hours are currently scheduled for Mondays and Wednesdays 11:00 AM – noon by appointment. Times are subject to change throughout the semester. Changes to this schedule will be posted on the CANVAS site and the instructor will send out an email to all enrolled students.

Communication:
Canvas is an official communication medium for this class. The professor will send out an email to enrolled students when readings or postings have been made to the CANVAS site. Each student is responsible for checking their university email and CANVAS daily. If a student prefers to use an email address other than the one assigned by the university, it is the student’s responsibility to link it to the assigned university address.

Taking notes at class presentations:
Please take notes during class, but please do NOT copy verbatim everything I present in class. Class presentations are intended to begin discussion and student note taking should be based on a summary of pertinent information. Exams reviews will cover all necessary topics on the exams. Please listen to what is being presented and discuss and note the bigger idea at hand. Select presentations and photos will be posted on CANVAS throughout the semester. Notes may be taken on a laptop during class, but only printed or handwritten notes on paper will be allowed during exams for reference.

Cell Phones:
Please turn all cell phones to vibrate, silent, or off during class. Use of cell phones is not a substitute for class attendance. You, your notes, the textbook, and a blank paper and a pencil are all you need and are allowed to have during an exam.

Exams:
There will be a total of two (2) exams, which consists of a midterm and a final cumulative exam. The final is scheduled for December 13, 2019 from 8:00 – 10:00 AM in Gould Hall 360. Notes may be taken on a laptop during class, but only printed or handwritten notes on paper will be allowed during exams for reference. Cell phones will be turned off and placed out of sight and reach. Exams are a time for sharing what knowledge you have gained from class, notes, the textbook, and applicable software without the aid of other students, cell phones, computers, etc. You, your notes, blank paper, and a pencil are all you need and are allowed to have during an exam.

Reading, Homework, and Case Study Assignments:
Students must complete each assignment on time and submit it to the correct location as specified by the professor. Unless otherwise stated, assignments due in the appropriate CANVAS Dropbox by the beginning of class on the day in which the homework is assigned due. Most homework assignments are due by 9:30 AM the Monday after we review the material in class. The assigned chapter reading is intended for the week we review those chapters. Please arrive to class having already read the assigned chapter(s) each week. Late assignments will receive a penalty of 25% per class period. The maximum deduction is 50% unless the assignment is not turned in at all. Some of the assignments will be completed as a team. Being organized, timely, and efficient are essential to optimizing your productivity. Assignments shall be submitted in a neat, complete, legible, and understandable to the professor manner. Some assignments may require both printed and digital submissions. Unless otherwise indicated, students are to complete the course requirements as individuals. Any indication that students are doing otherwise will result in the maximum ramifications as allowed by university policy. In the case of group assignments, all members are expected to contribute to the best potential. Unless stated otherwise, a single copy of the completed assignment, with the names of group members on the cover sheet, will suffice. The instructor retains the right to have group members grade the performance of all of the other members of their group.

Grades will be based upon the following criteria:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 – 100</td>
</tr>
<tr>
<td>B</td>
<td>80 – 89</td>
</tr>
<tr>
<td>C</td>
<td>70 – 79</td>
</tr>
<tr>
<td>D</td>
<td>60 – 69</td>
</tr>
<tr>
<td>F</td>
<td>0 – 59</td>
</tr>
</tbody>
</table>

Grading Scale:
90 – 100 = A, 80 – 89 = B, 70 – 79 = C, 60 – 69 = D, 50 – 59 = F

Late work is documented in the grade book and will be assessed for credit.

Cell Phones: Must be kept in the pocket or turned off.

Writing:
Papers and exams are to be typed in plain text or converted to PDF format.

Copying rights and permissions:
Subject matter is subject to change throughout the semester. Changes to this schedule will be posted on the CANVAS site. Some revisions or postings have been made to the CANVAS site.

The schedule may change slightly as we progress through the semester due to site visits, manufacturer’s technical representative visits, new material presentations, etc. Changes will be announced in class, via emails, and on CANVAS as stated above.

Week Subject Credit Required Reading(s) Remarks
1 819 = Introduction / COTE / refresher Ch 1
621 = Environmental Impact Ch 1
823 = Human-Comfort and Thermodynamics Assignment 1
2 626 = Thermodynamics Chaps 2 & 3 Opt 1H/D due
628 = Thermodynamics
830 = Environmental Impact, Case Studies (Assignment 2)

33
<table>
<thead>
<tr>
<th>Date</th>
<th>Assignment</th>
<th>Due Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2</td>
<td>Labor Day – NO CLASS</td>
<td></td>
<td>Opt 283 HW due</td>
</tr>
<tr>
<td>9/4</td>
<td>Environmental Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/6</td>
<td>Environmental Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/9</td>
<td>Passive Methods</td>
<td>Opt 5 HW due</td>
<td></td>
</tr>
<tr>
<td>9/11</td>
<td>Passive Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/13</td>
<td>Passive Methods / On-Site Power Generation</td>
<td>Opt 7 HW due</td>
<td></td>
</tr>
<tr>
<td>9/16</td>
<td>On-Site Power Generation</td>
<td>Opt 7 HW due</td>
<td></td>
</tr>
<tr>
<td>9/18</td>
<td>On-Site Power Generation / Structures</td>
<td>Opt 10 HW due</td>
<td></td>
</tr>
<tr>
<td>9/21</td>
<td>Load calculations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/23</td>
<td>Load calculations</td>
<td>Opt 4 HW due</td>
<td></td>
</tr>
<tr>
<td>9/25</td>
<td>Case Studies (Assignment 3)</td>
<td>Chapter 14</td>
<td></td>
</tr>
<tr>
<td>9/27</td>
<td>Architectural Acoustics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/1</td>
<td>Fall Break – NO CLASSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/6</td>
<td>Architectural Acoustics & Fire Prot.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/8</td>
<td>Advanced HVAC</td>
<td>Chapter 6</td>
<td></td>
</tr>
<tr>
<td>10/11</td>
<td>Advanced HVAC & Design Economics</td>
<td>Chapter 16</td>
<td></td>
</tr>
<tr>
<td>10/13</td>
<td>Plumbing Systems</td>
<td>Chapter 12</td>
<td></td>
</tr>
<tr>
<td>10/15</td>
<td>Electrical Service</td>
<td>Chapter 12</td>
<td></td>
</tr>
<tr>
<td>10/18</td>
<td>Electrical Service</td>
<td>Chapter 9 & 11</td>
<td></td>
</tr>
<tr>
<td>10/20</td>
<td>Special Systems</td>
<td>Chapter 9 & 11</td>
<td></td>
</tr>
<tr>
<td>10/21</td>
<td>Technical model</td>
<td>Chapter 9 & 11</td>
<td></td>
</tr>
<tr>
<td>10/22</td>
<td>Technical model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/25</td>
<td>Technical model and COTE measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/27</td>
<td>Technical model and COTE measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/1</td>
<td>Building Commissioning</td>
<td>Chapters 15</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>Building Commissioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/4</td>
<td>Thanksgiving NO CLASSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/7</td>
<td>Thanksgiving NO CLASSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/18</td>
<td>Project case study presentations in class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/20</td>
<td>Project case study presentations in class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/22</td>
<td>Project case study presentations in class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/25</td>
<td>Project case study presentations in class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/27</td>
<td>Project case study presentations in class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/29</td>
<td>Project case study presentations in class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/30</td>
<td>Environmental Impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/4</td>
<td>Load calculations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/6</td>
<td>- Project/case study presentations in class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/11</td>
<td>Mandatory studio clean up</td>
<td>8:00 – 10:00 AM</td>
<td></td>
</tr>
<tr>
<td>12/13</td>
<td>Final Exam 8:00 – 10:00 AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/17</td>
<td>Mandatory studio clean up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/19</td>
<td>Mandatory studio clean up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/21</td>
<td>Mandatory studio clean up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/24</td>
<td>Mandatory studio clean up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/26</td>
<td>Mandatory studio clean up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/28</td>
<td>Mandatory studio clean up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/30</td>
<td>Mandatory studio clean up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/31</td>
<td>Mandatory studio clean up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Presentations, Guidelines and Evaluation

Unless otherwise indicated, students are to complete the course requirements as individuals. Any indication that students are doing otherwise will result in the maximum ramifications as allowed by University Policy. In the case of group assignments, all members are expected to contribute to their best potential. Unless stated otherwise, a single copy of the completed assignment, with the names of the group members on the cover sheet, will suffice. The instructor retains the right to have group members grade the performance of all the other members of their group. To receive your final grade, final documentation of all work will be required and submitted before the end of the semester. The final documentation will be in printed and electronic form.

Field Trip and Enrichment Experience

We will have a field trip during September. This trip is intended to expand student knowledge of material selection, integrated systems, and sustainable construction in a specific context. Student costs will be determined during the first week of class.

Sketchbooks

In Assignment 4, you should keep a sketchbook for this class for use to take notes during lectures and pin-ups and to document the design process. Be prolific in words and sketch. Sketchbooks are your personal documentation (like a journal) and will not be graded or evaluated as part of your grade unless you choose to show the work as part of a presentation or desk critique toward a project grade. The use of sketchbooks will be allowed during quizzes, discussions, field trips, desk arts, and reviews.

Photography

Use a camera to document ideas you encounter about materials, design features and human response to spaces. More importantly, your camera can help you see more critically and improve your compositional skills. Look at the work of architectural photographers. Learn from the compositional methods they use and apply to your presentation drawings. Compare your photographs with core, thinking about background, lighting, visual axes. Compare what you see in your photographs with what you thought you saw in real life. Is there stuff in the photo you didn't notice before snapping the picture? Do as much editing "in camera" as possible and you will start to appreciate how much clutter is in the built environment. Much of the clutter is poorly integrated systems; carelessly placed electrical devices, surface mounted conduit, poorly arranged ceiling elements such as lighting and air grilles, structural elements poorly integrated into the architecture, etc. Photography can help you see the opportunities to bring these sorts of issues under control, improve your ability to compose better presentation views of your projects.

The role of Building System Integration

Design guidelines, regulations, and protocols are opportunities to form solutions and express how site, existing context, programmatic requirements, materiality, environmental concerns, spatial relationships, social aspects, and aesthetics (to name a few components) all work integrally into habitable and functional architecture.

Materials are comprised of texture, color, scale, proportions, structural capacities, and contribute to spatial definition, occupant emotions, productivity, thermal performance, symbolism, and overall aesthetics. Materials have both real and
figurative expressions. The physical assembly and spatial connections of materials and system components are also important design concerns.

Evaluation
The goal of evaluations is to give each student feedback on assignments and provide a letter grade that summarizes the quality of work presented. The following defines the meaning of letter grades within the context of this class. Each project will have a defined list of deliverables and an evaluation rubric.

Excellent Quality: “A”
A grade of “A” is earned by work that provides insight into the project’s issues and concepts. It is a project response that is creative and imaginative. It adds to our understanding of the possibilities framed by the project’s issues and constraints. It is a concept that has been developed at all levels. An “A” project is one that exhibits exemplary craft and care—craft that adds value to the ideas being presented. A grade of “A” is earned by truly exemplary work. It means that, using your own ingenuity and creativity, you have demonstrated that you have moved beyond problem and course requirements.

Above Average Quality: “B”
A grade of “B” is earned by work that demonstrates a clear understanding of the issues and concepts being addressed, exhibits a well-defined concept that addresses important project issues and constraints and manifests a high level of craft and care. It is a project response that exhibits a creative direction. A grade of “B” recognizes quality work that can and should be attained by everyone. It indicates that you have acquired appropriate skills and understanding for future success in school and the profession. A grade of “B” exemplifies truly good work that is at a professional level for students at the point of their education.

Average Quality: “C”
A grade of “C” is earned by work that meets most project requirements, demonstrates some understanding of the issues and concepts being addressed and exhibits an adequate level of craft and care. It recognizes appropriate effort that has resulted in a solution. A grade of “C” recognizes that students have made an effort but the product is below the quality level required to demonstrate competence. Those receiving a grade of a “C” should work to improve their understanding and skills by talking with the teacher and with other students to examine their work.

Below Average Quality: “D”
A grade of “D” reflects an unacceptable level of quality.

Poor Quality: “F”
A grade of “F” reflects an incomplete or missing response.

Project Feedback
The professors will make a general presentation of observations on the class’ collective work. It is an opportunity for the professors to highlight significant issues and compare and contrast ideas presented by the class.

Writing Assignments
Writing is a huge portion of design. You will be expected to convey design intent and progress in written form throughout the semester. Keep a sketchbook with you at all times to foster documentation of thought and process in both drawing and written form. An architect needs to present all aspects of a problem, as well as the way in which he or she addressed it. Allow images and words to paint a picture and tell a story. Students are expected to keep an updated online blog to facilitate the COTE competition measures.

Quality
Your communication skills greatly influence others’ perception of you. This includes spelling, grammar, body language, enunciation, and clarity of thought. Work process and product at fourth year level is professional. A high level of craftsmanship is expected.
ARCH 5566 DESIGN STUDIO 1: ARCHITECTURAL MAKING
Fall 2015 - The University of Oklahoma - College of Architecture

COURSE GOALS AND OBJECTIVES

- **Design**: Understanding the meaning of Wellness and how it relates to the site to form the spatial experience of the building
- **Layered Design**: Clearly articulating circulation for all people and activities throughout the site and building
- **Site Layering**: Building the building program and forming the site context and topography
- **Layer Diagrams**: Designing in consideration of the overall design

ASSIGNMENTS

Every student submission produced during the assignment is to be further developed during the course of the semester to form part of both midterm and final presentations. This is intended to show how the project’s influences, analyses, and development from start to finish, and how successive layers of design development circularly reflect on the overall design.

There will be a quiz every Friday. At the end of each quiz, students will take 10 minutes to write down their understanding of the review and list their thoughts and ideas for students to do for the next session. The notes will be provided for student discussion during the individual reviews or after the final quiz.

Assignment 1: Multi-Layer Map

Description: The assignment will test the students’ ability to analyze and interpret the site (Oklahoma City campus) while converting it into an environmental qualitative feature, flora, fauna, atmosphere, climate, topography, and the program and rituals.

Layer 1: Site Map

Students will develop a site map using layering techniques to illustrate the site’s context, sustainability and accessibility. Each aspect of the developed building will be related to the site as a foundation for understanding its context and the way that people inhabit space. The building and the site will be developed by layering “spatial” and “atmospheric” effects. The map will show the process followed in the analysis of the site and the generation of the ideas for the final project.

Layer 2: Site Layer – drawing to place on the top of layer 1 clearly able to convey through lines, surfaces, symbols necessary to understand the structure that will guide their design thinking.

Layer 3: Ritual layer – a series of diagrams devoted to the site’s context and the environment. The map will illustrate the process used to produce their final visual map and how impressions, data and criteria informed their design thinking.

Layer 4: Student layer – a collage of photographs taken from the site composed of images or images from the site that demonstrate the atmosphere, climate, and physical qualities of the site. Students will be asked to develop a student map as a communicative tool. The narrative process model of diagrams will be developed and extended in order to clearly show the process followed in the analysis of the site and the generation of the ideas for the final project.
Assignment time: 3 WEEKS – pinups of progress every Friday, final map

Technique: Each phase of the circulation model is to be developed with specific representation techniques, generally listed as follows: collage, hand and digital drawing, sketching. Examples of “good” and “bad” techniques, evidence diagrams and maps will be shown in class to guide students towards the final outcome.

Assignment 2: Rituals & the landscaping

Description: This assignment asks the student to think volumetrically about three spatial solutions imagined in the visual map in connection to different specific issues. Students are assigned to complete one in three different terrains: high, low and urban environments, as found in the scale required. The three terrains will be explored each time by specific techniques and investigate more clearly the program, circulation and sustainable building towards urban infrastructure solutions to improve water quality.

Iteration 1: three site massing models in consideration of the program with particular attention to rituals, pertains, movements and actions of wellness activities. Photographically recorded studies and 3D cereal performance site analysis of the models

Iteration 2: three site massing models in consideration of the program that involve the site and the architecture. The circulation has to cover ADA site requirements while offering a possible experience of spatial temporal progression through the landscape for all users and visitors. Spatial progression should consider the use of serial narratives.

Iteration 3: three site massing models in consideration of sustainability that involve building location, solar orientation, ventilations, daylighting, rainwater capture, rainwater detection etc. Students are asked at this step of the assignment to take photos of the three terrains using the section with site context to evaluate the three schemes and four efficiency in all four seasons.

Assignment time: 2 WEEKS

Technique: models and drawings are made out of chipboard, are appropriately in scale and located on a site model that can be used as a base for all the iterations produced. These models are to be regarded as the A0 Studios.

Assignment 3: Circulation & Accessibility

Description: Starting from the previous investigations on form, structure, rituals and connections to the site, the student is asked to produce a circulation diagrammatic model. Students are to strategically assign a portion of the site model and build the inside-outside circulation. At this stage the student should further investigate circulation by drafting onto a strategic portion. Continuation to the site and other parts of the building must be evident and well considered. In order to envisage and explore the conceived work behind the model students are asked to relate to a strategic portion. Drawings related to the rest of the building in embracing the portion selected in order to be included in the whole. The drawing should be diagrammatic and represent the building such created. The purpose of making such a model is to provide students with the tools to develop an understanding of the concept, but should be considered during the phase particularly with regard to waterways and connections for circulation from east to west.

This assignment is challenging and must provide a circulation diagrammatic model of all people, inclusive even with reduced mobility. Model and diagrams should allow to envisage connections both between nodes and verticals. The challenge lies on simplifying elevators, and ramps, ensuring maximum reflectivity on how architecture and rituals are together able to shape a fluid accessible space for all visitors.

Circulation model: one diagrammatic circulation model at the appropriate scale in consideration to the program. ADA site code, circulation through the site and remaining parts of the building, rituals and actions involved with wellness activities.

Assignment time: 1 WEEK

Technique: The circulation model should be made from bass wood appropriately in scale. The architectural features of the building with the peripheral parts of the building, rituals and actions involved with wellness activities are shown in class to guide students towards the final outcome.

Assignment 4: Site Linked Performance Analysis of Sustainability

Description: This assignment is to be developed by students in order to develop a sustainable design for a site considering water harvesting infrastructure through the elements of architecture. The investigation of form, structural analysis, ventilation and water needs by the students are to be shown in class to guide students towards the final outcome.

Students are asked to develop modifications to their designs based on the results of the analysis. Students will also consider the use of serial narratives. It is expected that students will be able to explain clearly the architectonic solutions and the concepts behind them.

Assignment time: 3 WEEKS

Technique: For this assignment student are required to use rendering programs, applications to essentially prove sufficient daylighting, ventilation and water harvesting through the diagrams.

EPA Rainworks Competition Board

Final Project: EPA Rainworks Competition Board – Master Plan Category with additional representations of the architectural component. Submissions will be provided through careful consideration of all the research and solutions considered, continuing the synthesis and research into solutions accordingly. EPA Campus Rainworks 2019 Competition requirements can be found at https://www.epa.gov/sites/production/files/2010-07/documents/epa_rainworks_competition_2019.pdf
Course Catalog Description

Prerequisites: ARCH 2463, ARCH 2456, ARCH 2343, and ARCH 4133 with a grade of C or better. Co-requisites: ARCH 4563, ARCH 4233, ARCH 4453; or permission of director. Introduces principles and techniques of site design within a building context of place, order, form, and structure. It also introduces climatic data analysis software as a means for teaching evidence based design and sustainable design principles. Studio-based lectures and assignments will challenge students to analyze, adapt to, and transform the site within a building design context.

NAAB Criteria

This course meets the following performance criteria from the 2014 NAAB Conditions for Accreditation during the semester. For the current conditions and procedures visit: http://www.naab.org/accreditation/program-resources/current-conditions-and-procedures/

PART TWO (II): SECTION 1 — STUDENT PERFORMANCE — EDUCATIONAL REALMS AND STUDENT PERFORMANCE CRITERIA

The accredited degree program must demonstrate that each graduate possesses the knowledge and skills defined by the criteria below. The knowledge and skills defined here represent those required to prepare graduates for the path to internship, examination, and licensure and to engage in related fields. The program must provide student work as evidence that its graduates have satisfied each criterion.

The criteria encompass two levels of accomplishment:

Understanding — The capacity to classify, compare, summarize, explain, and/or interpret information.

Ability — Proficiency in using specific information to accomplish a task correctly, selecting the appropriate information, and accurately applying it to the solution of a specific problem, while also distinguishing the effects of its implementation.

Students will be introduced to the following NAAB criteria:

- B.3 Codes and Regulations
- C.3 Integrative Design

Students will demonstrate understanding in regards to the following:

- C.1 Research

Students will demonstrate ability in regards to the following:

- A.2 Design Thinking Skills
- A.3 Investigative Skills
- A.4 Architectural Design Skills
- A.5 Use of Precedents
- E.1 Pre-Ops
- E.2 Site Design

Required Texts, Codas, Materials, and Tools:

- Computer & software: Those software and skills that enable the student to produce the best possible representation they are capable of producing

- **Recommended Texts, Materials, and Tools:**
 - Clamp light (highly recommended)
 - Large monitor and projector laptop and a cable lock

Assignments and Grading

- Weekly Pinup and Professionalism 10%
- Assignment 1 10%
- Assignment 2 10%
- Assignment 3 10%
- Assignment 4 10%
- Design Project — midterm review 20% (10/4/19)
- Design Project — final review (including EPA Campus Rainworks Board) 30% (12/4/19)

TOTAL 100%

In the Division of Architecture, students are required help clean and reset the studio during the Final Exam period for this course. Failure to participate in this session will result in a 10% grade reduction. At the end of this session, students must remove all projects, supplies, and personal equipment.

Competition, Midterm, and Final presentation dates are defined, but projects are due by 10:00 PM the previous evening per Division of Architecture policy.

Gradingrubrics will be distributed with assignment/project descriptions. In general, 50% of the assignment grade will be submitting the required deliverables and 50% of the grade will be the beauty of their representation, measured by such elements as layout, composition, graphic quality and legibility.

- Computer & Software: Those software and skills that enable the student to produce the best possible representation they are capable of producing.

- **Recommended Texts, Codas, Materials, and Tools:**
 - Clamp light (highly recommended)
 - Large monitor and projector laptop and a cable lock.

Assignments and Grading

- Weekly Pinup and Professionalism 10%
- Assignment 1 10%
- Assignment 2 10%
- Assignment 3 10%
- Assignment 4 10%
- Design Project — midterm review 20% (10/4/19)
- Design Project — final review (including EPA Campus Rainworks Board) 30% (12/4/19)

TOTAL 100%

In the Division of Architecture, students are required help clean and reset the studio during the Final Exam period for this course. Failure to participate in this session will result in a 10% grade reduction. At the end of this session, students must remove all projects, supplies, and personal equipment.

Competition, Midterm, and Final presentation dates are defined, but projects are due by 10:00 PM the previous evening per Division of Architecture policy.

Gradingrubrics will be distributed with assignment/project descriptions. In general, 50% of the assignment grade will be submitting the required deliverables and 50% of the grade will be the beauty of their representation, measured by such elements as layout, composition, graphic quality and legibility.
ARCH 2463 – Methods IV: Sustainable and Resilient Systems
COLLEGE OF ARCHITECTURE – University of Oklahoma
FITHIAN – Spring 2019

T/TH, 9:00-10:15 AM GH 1S5
FINAL W May 8, 2019: 8:00-10:00 AM GH 155

Lee A. Fithian, AIA, AICP, NCARB, LEED AP
Assistant Professor, Division of Architecture
fithian@ou.edu
Office Hours: 1:00-2:15 W or by appointment, GH 267

COURSE DESCRIPTION
This course is the third of two systems courses necessary to a professional NAAB-accredited program in Architecture. The first course, Methods IV, is approached in two parts. The first part of this course acquaints provides an introduction to the study of impacts of site and its related exterior environmental factors on building systems, an overview of building site selection criteria, building envelope systems, and the acquisition, installation, and evaluation of software used for environmental design analysis.

By the end of the course, students will demonstrate the ability to understand climate and water issues and how the built environment can contribute to mitigating these issues.

COURSE LEARNING OBJECTIVES
- To critically contribute to the development of environmentally responsible architecture.
- To understand, analyze, and synthesize systems and their impact on the built environment.
- To comprehend and understand climate and water issues and how the built environment can contribute to mitigating these issues.
- To recognize and understand energy efficiency problems in existing buildings and design system modifications with great or efficiencies, working toward the net zero integrated response.

NAAB STUDENT PERFORMANCE CRITERIA
This course meets the following performance criteria from the 2014 NAAB Criteria for Accreditation during this semester AND the next semester (M5).

For the current conditions and procedures visit: http://www.naab.org/accreditation/program-resources/current

PART TWO (II): SECTION 1 – STUDENT PERFORMANCE—EDUCATIONAL MEASURES AND STUDENT PERFORMANCE CRITERIA

For the current conditions and procedures visit: http://www.naab.org/accreditation/program-resources/current

REQUIRE DTEXT
- Various readings as assigned will be available on the class CANVAS site

REQUIRE DSOF TWARE
- Multiple software as assigned and downloaded, or available in class, Laptop REQUIRED

CLASS COMMUNICATION
CANVAS and your university email address will be the communication tools utilized for this class. Students are
ASSIGNMENTS OVERVIEW

Each assignment must be a PDF submitted on CANVAS. Include text that explains the application to your project, emphasizing the meaning of the outputs and not just how a software tool showed a particular strategy to be preferable. Provide all graphics necessary to make this a standalone document in support of your past or present studio project. The tool graphic output MUST support your design strategies and decisions. Each assignment will have a number and due date when the assignment is given.

1. Climate Consultant Software - Psychrometric Chart, Heating Degree Days, Cooling Degree Days, Temperature, and Humidity for each season. Identify the top five passive strategies YOU would use and include narrative of how they apply to the design selected.
2. Site plan with wind roses: Use the wind roses from Climate Consultant appropriate for each season’s natural ventilation and optimized for temperature and humidity of the heating (2) and cooling (2) season as identified in Assignment #1. Coordinate and incorporate with contours and site analysis.
3. VELUX Visualizer 2 Software – graphic output of major rooms showing daylighting solution with sufficient Daylighting Factor on work surfaces. On the site plan show building orientation to maximize daylighting. Show all studies as you optimize for maximum daylight factor.
4. Internal Ventilation Illustration - Graphics output using the same rooms as used in Assignment #2 and #3, use WInd Eml Pro App, and do not use “magic arrows”, show all studies as you optimize for natural ventilation. NOTE: You will have to synthesize and optimize the final orientation of the building regarding ventilation and daylighting as well as site constraints.
5. Rainfall available for building AND storage calculations to meet most or all of building needs – Output charts to PDF with narrative. Include on Site plan rainfall storage locations.
6. Google Solar and BSI – Identify building energy requirements and calculate NET ZER0

FINAL Your FINAL will be:

1. PPT – to support a 5 minute presentation of your combined design analysis assignments (1-6) needed to reflect your final changes to your past or present studio project. The PPT should be visual and tell the story of your analyses and their impact on the design. This should be a standalone presentation and should tell the story of your semester’s work.
2. FINAL DISCUSSION ESSAY – in clear, concise terms, with a minimum of 1000 words, write a reflective assessment of your design process and how it supports your PPT presentation analysis, pay close attention to how you have adapted and integrated the graphically based analytical tools introduced in the course and how your design process was altered to incorporate your new skill set. Submission must be in DOC format.

GRADUATE STUDENTS - ADDITIONAL REQUIREMENTS

Graduate students are required to present all their assignments and their final project to the class. Students will be randomly selected and will present the day after the assignment is due.

ERRORS

Errors or omissions to this syllabus or class presentations will be noted as observed and do not constitute incomplete or late work from students. Students are responsible for bringing the professor’s attention to any and all possible errors they encounter.